首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
An efficient method for Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. is described. Embryogenic cell suspension cultures derived from stem internode callus were transformed with Agrobacterium tumefaciens harbouring pCAMBIA 1301 plant expression vector. Transformed colonies were selected on medium supplemented with hygromycin (5 mg/l). Continuously growing transformed cell suspension cultures were initiated from these colonies. Expression of β-glucuronidase in the suspension cultures was analysed by RT-PCR and GUS histochemical staining. GUS specific activity in the transformed suspension cultures was quantified using a MUG-based fluorometric assay. Expression levels of up to 105,870 pmol 4-MU/min/mg of total protein were noted in the transformed suspension cultures and 67,248 pmol 4-MU/min/mg of total protein in the spent media. Stability of GUS expression over a period of 7 months was studied. Plantlets were regenerated from the transformed embryogenic cells. Stable insertion of T-DNA into the host genome was confirmed by Southern blot analysis. This is the first report showing stable high-level expression of a foreign protein using embryogenic cell suspension cultures in S. album. U. K. S. Shekhawat and T. R. Ganapathi contributed equally to this work.  相似文献   

2.
Summary Lolium temulentum L. (Darnel ryegrass) is a self-fertile and diploid grass species with a relatively short life cycle. We propose to use L. temulentum as a model system for genetic manipulation studies in forage and turf grasses, since most of the important grasses are outcrossing, require vernalization to flower, and in some cases are polyploid. As the first step to develop an efficient regeneration and transformation system, we performed a large-scale genotype screening for tissue culture responses using 46 L. temulentum accessions. Embryogenic callus formation frequency ranged from <1% to 11% across all accessions tested. Embryogenic calluses of a few responsive accessions were used to establish cell suspension cultures. The regeneration frequency of green plantlets from the established cell suspension ranged from 15% to 39%. After transferring the regenerants to the greenhouse, fertile plants were readily obtained without any vernalization treatment. This efficient plant regeneration system is being used for genetic transformation studies. With the development of genomics approaches for the improvement of forage and turf grasses, L. temulentum could serve as a model system for testing gene functions.  相似文献   

3.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

4.
Methods for induction of callus and cell suspension cultures have been developed for the medicinally important herb Centella asiatica (L.) Urban. Thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) analysis showed the presence of asiaticoside in the in vitro grown leaves, callus and cell suspension cultured cells.  相似文献   

5.
Cucumber (Cucumis sativus L.) cytokinin-independent embryogenic cell suspension cultures were derived and maintained for more than 3.5 years without losing the embryogenic potential. The preparation and the characteristics of the cucumber embryogenic cell suspension possess many similarities to that of carrot. The cultures were induced from hypocotyl explants of in vitro grown cucumber plants in liquid MS media containing 2,4-dichlorophenoxyacetic acid as the sole growth regulator during 6 weeks and they contained a heterogeneous array of several different types of single cells and cell clusters (PEMs). The established cell suspensions were subcultured in 1-week interval, while the inoculation density was optimized to 2.0 × 105 cells ml−1 using cell viability as a marker. Somatic embryos were obtained after the transfer of the proembryogenic masses to a hormone-free semisolid MS medium with a frequency of 388 ± 57 somatic embryos per 1 ml of packed cell volume of the established cucumber embryogenic culture within 7 days. The frequency of normal somatic embryos with two cotyledons was found to be 78%. Such embryos possessed the potential of spontaneous maturation and the embryo conversion rates were 87%. The yield of normally growing plants was much higher compared with that previously described for cucumber systems. Somatic embryo-derived plants were successfully transferred to the greenhouse where they flowered and fruited.  相似文献   

6.
Pinus pinaster (Ait.) somatic embryogenesis (SE) has been developed during the last decade, and its application in tree improvement programs is underway. Nevertheless, a few more or less important problems still exist, which have an impact on the efficiency of specific SE stages. One phenomenon, which had been observed in embryogenic tissue (embryonal mass, EM) initiated from immature seed, has been the loss of the ability to produce mature somatic embryos after the tissue had been cultured for several months. In an attempt to get insight into the differences between young cultures of EM (3-mo-old since the first subculture) of P. pinaster that produced mature somatic embryos and the same lines of significantly increased age (18-mo-old, aged EM) that stopped producing mature somatic embryos, we analyzed in both types of materials the levels of endogenous hormones, polyamines, the global DNA methylation, and associated methylation patterns. In addition, we included in the analysis secondary EM induced from mature somatic embryos. The analysis showed that the two tested genotypes displayed inconsistent hormonal and polyamine profiles in EM cultures of a similar phenotype and that it might be difficult to attribute one specific profile to a specific culture phenotype among genotypes. Experiments were also undertaken to determine if the global DNA methylation and/or the resulting methylation pattern could be manipulated by treatment of the cultures with a hypomethylating drug 5-azacytidine (5-azaC). An aged EM was exposed to different concentrations and durations of 5-azaC, and its response in culture was established by fresh mass increases and somatic embryo maturation potential. All of the analyses are new in maritime pine, and thus, they provide the first data on the biochemistry of EM in this species related to embryogenic potential.  相似文献   

7.
8.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

9.
Sphaeralcea angustifolia is used in Mexican traditional medicine to treat inflammatory processes. SCopoletin (SC), TOmentin (TO), and sphaeralcic acid (SA) were reported as the main anti-inflammatory compounds in this species. The aim of this study was to establish in vitro conditions for the development of calli and cell suspension cultures that are the producers of these active compounds. Callus cultures of plant leaf explants were set up using different auxin levels of α-naphthalene acetic acid (NAA) in combination with a constant concentration (0.1 mg L?1) of Kinetin (Kn) in Murashige and Skoog (MS) medium. Optimal combinations for callus induction were 1.0 and 2.0 mg L?1 of NAA. SC, TO, and SA were not detected in callus tissues. Employing a 4 % inoculum in fresh biomass, cell suspension was established from friable callus with 1.0 mg L?1 of NAA in combination with 0.1 mg L?1 of Kn in MS liquid medium (27.4 mM nitrate). The cellular suspension synthesized SC and SA, SC was excreted into the culture medium, while SA was excreted into the culture medium and accumulated in biomass. To improve SC and SA production, total nitrate content was reduced in MS medium. On diminishing nitrate content to 2.74 mM, cellular suspension growth was not modified. SC concentration (0.04 %) was 60-fold higher than that detected in the wild plant (0.00067 %), TO was produced (0.096 %), and SA content (0.0036 %) was not improved. SA production in MS medium with 0.274 mM nitrate (0.004 %) was enriched 12-fold (0.0003 %) in relation to that of the wild plant. The anti-inflammatory effects at 5 h of intraperitoneal (i.p.) administration (100 mg per kg BW) of dichloromethane extracts from the medium (42 ± 3 %) and biomass (39 ± 9.3 %) of S. angustifolia cell suspensions cultivated in MS with 2.74 mM nitrate were similar. The effect of the biomass dichloromethane extract was dose dependent with a median Effective Dose (ED50) of 137.63 mg per kg BW.  相似文献   

10.
11.

Background

Gonadotropin releasing hormone (GnRH) is responsible for stimulation of gonadotropic hormone (GtH) in the hypothalamus-pituitary-gonadal axis (HPG). The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio).

Results

We have characterized a zebrafish [Trp7, Leu8] or salmon (s) GnRH variant, gnrh 3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH), was shown capable of driving cell specific reporter gene expression in transgenic zebrafish.

Conclusions

The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar) GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.
  相似文献   

12.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

13.
Lin X  Minamisawa N  Takechi K  Zhang W  Sato H  Takio S  Tsukaya H  Takano H 《Planta》2008,228(4):601-608
ANGUSTIFOLIA (AN), a plant homolog of C-terminal binding protein, controls the polar elongation of leaf cells and the trichome-branching pattern in Arabidopsis thaliana. In the present study, degenerate PCR was used to isolate an ortholog of AN, referred to as LgAN, from larch (Larix gmelinii). The LgAN cDNA is predicted to encode a protein of 646 amino acids that shows striking sequence similarity to AN proteins from other plants. The predicted amino acid sequence has a conserved NAD-dependent 2-hydroxy acid dehydrogenase (D2-HDH) motif and a plant AN-specific LxCxE/D motif at its N-terminus, as well as a plant-specific long C-terminal region. The LgAN gene is a single-copy gene that is expressed in all larch tissues. Expression of the LgAN cDNA rescued the leaf width and trichome-branching pattern defects in the angustifolia-1 (an-1) mutant of Arabidopsis, showing that the LgAN gene has effects complementary to those of AN. These results suggest that the LgAN gene has the same function as the AN gene.  相似文献   

14.
Eggplant (Solanum melongena L.) is one of the most important vegetables among the Solanaceae and can be a host to fungal species causing powdery mildew (PM) disease. Specific homologs of the plant Mildew Locus O (MLO) gene family are PM susceptibility factors, as their loss of function results in a recessive form of resistance known as mlo resistance. In a previous work, we isolated the eggplant MLO homolog SmMLO1. SmMLO1 is closely related to MLO susceptibility genes characterized in other plant species. However, it displays a peculiar non-synonymous substitution that leads to a T → M amino acid change at protein position 422, in correspondence of the MLO calmodulin-binding domain. In this study, we performed the functional characterization of SmMLO1. Transgenic overexpression of SmMLO1 in a tomato mlo mutant compromised resistance to the tomato PM pathogen Oidium neolycopersici, thus indicating that SmMLO1 is a PM susceptibility factor in eggplant. PM susceptibility was also restored by the transgenic expression of a synthetic gene, named s-SmMLO1, encoding a protein identical to SmMLO1, except for the presence of T at position 422. This indicates that the T → M polymorphism does not affect the protein role as PM susceptibility factor. Overall, the results of this work are of interest for the functional characterization of MLO proteins and the introduction of PM resistance in eggplant using reverse genetics.  相似文献   

15.
An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical -glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis.  相似文献   

16.
The FDA-approved anti-cancer compound paclitaxel is currently produced commercially by Taxus plant cell suspension cultures. One major limitation to the use of plant cell culture as a production platform is the low and variable product yields. Therefore, methods to increase and stabilize paclitaxel production are necessary to ensure product security, especially as the demand for paclitaxel continues to rise. Although a stable transformation method for Taxus suspension cultures has been developed, stable transformant yields are low (around 1% of experiments) and the method does not translate to the Taxus cuspidata Siebold and Zucc. and Taxus canadensis Marshall cell lines utilized in this study. Therefore, a new method for Agrobacterium-mediated transformation of Taxus callus and suspension cultures was developed through identification of the optimal Agrobacterium strain, inclusion of an anti-necrotic cocktail (silver nitrate, cysteine, and ascorbic acid) and increased recovery time for cells after cocultivation, the time following infection with Agrobacterium tumefaciens. Application of the increased recovery time to transformation of T. cuspidata line PO93XC resulted in 200 calluses staining positive for GUS. Additionally, two transgenic lines have been maintained with stable transgene expression for over 5 yr. This method represents an improvement over existing transformation methods for Taxus cultures and can be applied for future metabolic engineering efforts.  相似文献   

17.
Peculiarities of respiration of cells cultures producing biologically active compounds (isoprenoids and alkaloids) were investigated in order to optimize productivity of culture growth and biosynthesis. It had been revealed that studied cells cultures of Dioscorea deltoidea Wall (producer of furistanol glycosides), Stephania glabra (Roxb.) Miers (producer of stepharin alkaloid) and Polyscias filicifolia Bailey (complex of biologically active agents) differ both in joint respiration activity and in ratio between cytochrome and cyanide-resistant respiration, while changes of rate of total oxygen consumption and activity of alternative oxidase during growth were found to be individual for every investigated culture. Maximum rate of oxygen consumption for cells of D. deltoidea and S. glabra was marked in the period preceding active synthesis of secondary metabolites (lag phase for D. deltoidea and exponential phase for S. glabra). The revealed trends can be used for further monitoring and regulation of growth and biosynthesis of secondary metabolites in producing cell cultures during deep cultivation.  相似文献   

18.
19.
The biocatalytic ability of transgenic crown galls of Panax quinquefolium was evaluated by using eugenol (1) as a substrate and suspension cultures of Nicotiana tabacum as control system. Three biotransformed products, namely: 2-methoxy-4-(2-propenyl)phenyl-O-β-d-glucopyranoside (2, 67.11%), 2-methoxy-4-(2-propenyl)phenyl-O-β-d-glucopyranosyl (6′ → 1″)-β-d-xylopyranoside (3, 2.85%) and methyl eugenol (4, 14.30%) were obtained after 5 days of administration of eugenol to the suspension cultures of transgenic crown galls of P. quinquefolium. In contrast, only one product, compound 2 (15.41%), was obtained in suspension cultures of N. tabacum after 5 days of incubation. The results indicated that the glycosylation ability of transgenic crown galls of P. quinquefolium was much higher than that of the cultured cells of N. tabacum.  相似文献   

20.
Agrobacterium tumefaciens strain LBA4404 carrying plasmid pTOK233 encoding the hygromycin resistance (hph) and beta-glucuronidase (uidA) genes has been used to transform two agronomic grass species: tall fescue (Festuca arundinacea) and Italian ryegrass (Lolium multiflorum). Embryogenic cell suspension colonies or young embryogenic calli were co-cultured with Agrobacterium in the presence of acetosyringone. Colonies were grown under hygromycin selection with cefotaxime and surviving colonies plated on embryogenesis media. Eight Lolium (six independent lines) and two Festuca plants (independent lines) were regenerated and established in soil. All plants were hygromycin-resistant, but histochemical determination of GUS activity showed that only one Festuca plant and one Lolium plant expressed GUS. Three GUS-negative transgenic L. multiflorum and the two F. arundinacea plants were vernalised and allowed to flower. All three Lolium plants were male- and female-fertile, but the Festuca plants failed to produce seed. Progeny analysis of L. multiflorum showed a 24-68% inheritance of the hph and uidA genes in the three lines with no significant difference between paternal and maternal gene transmission. However, significant differences were noted between the paternal and maternal expression of hygromycin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号