首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the available reverse genetic approaches for studying gene function, virus-induced gene silencing (VIGS) has several advantages. It allows rapid characterization of gene function independent of stable transformation, which is basically difficult to achieve in monocots, and offers the potential to silence individual or multiple genes of a gene family. In order to establish a VIGS system in Aegilops tauschii, modified vectors derived from Barley stripe mosaic virus (BSMV) were used for silencing a phytoene desaturase gene that provides a convenient visual reporter for silencing. The results demonstrated a high efficiency of BSMV-VIGS in A. tauschii. Moreover, the BSMV-VIGS system was used to target a 354 bp specific region of the Dehydration-responsive element-binding (AetDreb2) gene, resulting in successful silencing of the gene in A. tauschii plants, as verified by real-time qRT-PCR. Indeed, in comparison with plants that were inoculated with an empty vector (BSMV:00), a faster rate of wilting and a lower relative water content were observed in plants inoculated with BSMV:AetDreb2 when they were exposed to drought stress. Therefore, BSMV-VIGS can be efficiently employed as a novel tool for reverse genetics in A. tauschii. It can also be used to study the effects of polyploidization on the gene function by a comparative analysis between bread wheat and its diploid progenitor.  相似文献   

2.

Key message

Virus-induced gene silencing (VIGS) system could be performed successfully in Gladiolus hybridus with vacuum infiltration of cormels and young plants.

Abstract

Functional analysis of genes in gladiolus has previously been impractical due to the lack of an efficient stable genetic transformation method. However, virus-induced gene silencing (VIGS) is effective in some plants which are difficult to transform through other methods. Although the Tobacco rattle virus (TRV)-based VIGS system has been developed and used for verifying gene functions in diverse plants, an appropriate TRV-VIGS approach for gladiolus has not been established yet. In this report we describe the first use of the TRV-VIGS system for gene silencing in gladiolus. Vacuum infiltration of cormels and young plants with the GhPDS-VIGS vector effectively down-regulated the PHYTOENE DESATURASE ortholog GhPDS gene and also resulted in various degrees of photobleaching in Gladiolus hybridus. The reduction in GhPDS expression was tested after TRV-based vector infection using real-time RT-PCR. In addition, the progress of TRV infection was detected by fluorescence visualization using a pTRV2: CP-GFP vector. In conclusion, the TRV-mediated VIGS described here will be an effective gene function analysis mechanism in gladiolus.  相似文献   

3.
4.
5.
6.
The Agrobacterium-mediated transient assay is a relatively rapid technique and a promising approach for assessing the expression of a gene of interest. Despite the successful application of this transient expression system in several plant species, it is not well understood in spinach. In this study, we analyzed various factors, including infiltration method, Agrobacterium strain and density, and co-infiltration of an RNA silencing suppressor (p19), that affect transient expression following agroinfiltration in spinach. To evaluate the effects of these factors on the transient expression system, we used the β-glucuronidase (GUS) reporter gene construct pB7WG2D as a positive control. The vacuum-based infiltration method was much more effective at GUS gene expression than was the syringe-based infiltration method. Among the three Agrobacterium strains examined (EHA105, LBA4404, and GV2260), infiltration with the GV2260 strain suspension at a final optical cell density (OD600) of 1.0 resulted in the highest gene expression. Furthermore, co-expression of suppressor p19 also increased the efficiency and duration of gene expression and protein accumulation. The results indicate that the use of optimized conditions for transient gene expression could be a simple, rapid, and effective tool for functional genomics in spinach.  相似文献   

7.

Key message

TAS atasiRNA-producing region swapping used one-step, high efficiency, and high fidelity directional TC-cloning. Uniform silencing was achieved without lethality using miRNA trigger- TAS overexpression fusion cassettes to generate 21-nt atasiRNA.

Abstract

Plant transgenic technologies are very important for basic plant research and biotechnology. Artificial trans-acting small interfering RNA (atasiRNA) represents an attractive platform with certain advantages over other silencing approaches, such as hairpin RNA, artificial microRNA (amiRNA), and virus-induced gene silencing (VIGS). In this study, we developed two types of constructs for atasiRNA-mediated gene silencing in plants. To functionally validate our constructs, we chose TAS1a as a test model. Type 1 constructs had miR173-precursor sequence fused with TAS1a locus driven by single promoter–terminator cassette, which simplified the expression cassette and resulted in uniform gene silencing. Type 2 constructs contained two separate cassettes for miR173 and TAS1a co-expression. The constructs in each type were further improved by deploying the XcmI-based TC-cloning system for highly efficient directional cloning of short DNA fragments encoding atasiRNAs into TAS1a locus. The effectiveness of the constructs was demonstrated by cloning an atasiRNA DNA into the TC site of engineered TAS1a and silencing of CHLORINA 42 (CH42) gene in Arabidopsis. Our results show that the directional TC-cloning of the atasiRNA DNA into the engineered TAS1a is highly efficient and the miR173–TAS1a fusion system provides an attractive alternative to achieve moderate but more uniform gene silencing without lethality, as compared to conventional two separate cassettes for miR173 and TAS locus co-expression system. The design principles described here should be applicable to other TAS loci such as TAS1b, TAS1c, TAS2, or TAS3, and cloning of amiRNA into amiRNA stem-loop.
  相似文献   

8.
Whole-genome bisulfite sequencing (WGBS) allows single-base resolution and genome-wide profiling of DNA methylation in plants and animals. This technology provides a powerful tool to identify genes that are potentially controlled by dynamic changes of DNA methylation and demethylation. However, naturally occurring epimutants are rare and genes under epigenetic regulation as well as their biological relevances are often difficult to define. In tomato, fruit development and ripening are a complex process that involves epigenetic control. We have taken the advantage of the tomato epimutant Colourless non-ripening (Cnr) and performed comparative mining of the WGBS datasets for the Cnr and SlCMT3-silenced Cnr fruits. We compared DNA methylation profiles for the promoter sequences of approximately 5,000 bp immediately upstream of the coding region of a list of 20 genes. Differentially methylated regions were found for some of these genes. Virus-induced gene silencing (VIGS) of differentially methylated gene SlDET1 or SlPDS resulted in unusual brown pigmentation in Cnr fruits. These results suggest that comparative WGBS coupled with VIGS can be used to identify genes that may contribute to the colourless unripe phenotype of fruit in the Cnr epimutant.  相似文献   

9.
10.
Tomato (Solanum lycopersicum) is a model crop plant for the study of fruit ripening and disease resistance. Here we present a systemic study on in planta transformation of tomato with Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA1303 binary vector bearing HPTII as a plant selectable marker and mGFP/GUS fusion as the reporter gene. We attempted the transformation of tomato at different developmental stages viz. during seed germination, seedling growth, and floral bud development. The imbibition of seeds with Agrobacterium suspension led to seed mortality. The vacuum infiltration of seedlings with Agrobacterium suspension led to sterility in surviving plants. Successful transformation could be achieved either by dipping of developing floral buds in the Agrobacterium suspension or by injecting Agrobacterium into the floral buds. Most floral buds subjected to dip as well as to injection either aborted or had arrested development. The pollination of surviving floral buds with pollen from wild-type plants yielded fruits bearing seeds. A transformation efficiency of 0.25–0.50% was obtained on floral dips/floral injections. Transgenic plants were selected by screening seedlings for hygromycin resistance. The presence of the transgene in genomic DNA was confirmed by Southern blot analysis and expression of the reporter gene up to the T4 generation. The amenability of tomato for in planta transformation simplifies the generation of transgenic tomato plants obviating intervening tissue culture.  相似文献   

11.
UDP-glucosyltransferases (UGTs) contribute to Fusarium head blight (FHB) resistance of wheat and barley by glycosylating the deoxynivalenol (DON), which is produced by Fusarium fungus. In this study, seven alleles of barley HvUGT14077 (GenBank No.GU170356.1) were cloned using RT-PCR. Among them, HvUGT-10W1, which was isolated from a FHB resistant barley variety 10W1, was significantly up-regulated in young spikes after F. graminearum (F.g) inoculation. HvUGT-10W1::GFP was subcellularly located in the plasma membrane and cytoplasm of the wheat protoplasts. In vitro antifungal activity assay showed that the HvUGT-10W1 protein exerted obvious inhibition against the growth of F.g. The silencing of the HvUGT-10W1 by virus-induced gene silencing (VIGS) resulted in compromised FHB resistance of 10W1, which was shown by the increased infected colonies on the leaves. These indicated that the barley HvUGT-10W1 may also contribute to F.g resistance in barley and provided a potential candidate gene to develop transgenic barley with enhanced FHB resistance.  相似文献   

12.
13.
14.
15.
Reactive oxygen species (ROS) and calcium (Ca2+), two crucial intracellular signaling molecules, have been reported to play important roles in chlorophyll biosynthesis. In this study, we aimed to investigate whether disturbance of chlorophyll synthesis affects chloroplast ROS and Ca2+ homeostases. Chlorophyll biosynthesis was inhibited at the Mg branch by virus-induced gene silencing (VIGS) of CHLI gene encoding the Mg chelatase CHLI subunit in pea (Pisum sativum). Subsequently, ROS and intracellular free Ca2+ concentration ([Ca2+]i) in these chlorophyll-deficient pea plants were evaluated by histochemical and fluorescent staining assays. The results showed that the superoxide anion and hydrogen peroxide were predominantly generated in chloroplasts of the yellow leaves of pea VIGS-CHLI plants. The expression of genes encoding chloroplast antioxidant enzymes (CuZn-superoxide dismutase, ascorbate peroxidase, glutathione reductase, phospholipid glutathione peroxidase, peroxiredoxin and thioredoxins) were also decreased in the leaves of VIGS-CHLI plants compared with the control plants. Additionally, the [Ca2+]i were significantly reduced in the yellow leaves of VIGS-CHLI plants compared with the green leaves of VIGS-GFP control plants. The expression of genes encoding Ca2+ signaling related proteins (thylakoid Ca2+ transporter, calmodulins and calcineurin B-like protein) was down-regulated in yellow VIGS-CHLI leaves. These results indicate that inhibition of chlorophyll biosynthesis at the Mg branch by silencing CHLI affects chloroplast ROS homeostasis and Ca2+ signaling and down-regulates the expression of ROS scavenging genes and Ca2+ signaling related genes.  相似文献   

16.
17.
The demand for INSULIN is increasing rapidly along with the increased number of diabetic patients. Using the CRE/loxP system, we developed a selective marker-free system without crossing to produce PROINSULIN in transgenic plant. In frame of this approach, the induced promoter pRD29A was isolated from Arabidopsis. The CRE recombinase gene was placed under the control of pRD29A between two loxP recombination sites together with the selective NPTII gene. Furthermore, the binary vector with CRE recombinase and PROINSULIN was constructed and introduced into tobacco (Nicotiana tabacum L.) by Agrobacterium-mediated transformation. Gene excision was used to remove the sequence between the two loxP sites at the presence of 200 mM NaCl. PCR analysis showed that self-excision occurred in several T0 transgenic plants. Transgenic plants without any marker gene successfully expressed PROINSULIN. This auto-excision strategy provides efficient means of removing the selectable marker gene from transgenic plants. It is an efficient method for producing bio-safe recombinant protein and other valuable substances in plants.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号