首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4′-O-β-d-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104–240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.  相似文献   

2.
3.
4.
Resveratrol exerts several pharmacological activities, including anti-cancer, anti-inflammatory, cardioprotective, or antioxidant effects. However, due to its occurrence in plants more in glycosidic form as piceid, the bioavailability and bioactivity are limited. The enzymatic potential of probiotics for the transformation of piceid to resveratrol was elucidated. Cell extract from Bifidobacteria (B.) infantis, B. bifidum, Lactobacillus (L.) casei, L. plantarum, and L. acidophilus was evaluated for their effect in this bioconversion using high-performance liquid chromatography (HPLC) as analytical tool. Cell extract of B. infantis showed the highest effect on the deglycosylation of piceid to resveratrol, already after 30 min. Cell extracts of all other tested strains showed a significant biotransformation with no further metabolization of resveratrol. The conversion of piceid to resveratrol is of importance to increase bioavailability and bioactivity as shown for anti-inflammation in this study. Cell extracts from probiotics, especially from B. infantis, may be added to piceid containing products, for achieving higher biological effects caused by the bioactivity of resveratrol or by health promoting of the probiotics. These findings open a new perspective of novel combination of cell extracts from probiotics and piceid, in health-promoting pharmaceutical and food products.  相似文献   

5.
Colorectal cancer is generally believed to progress through an adenoma - carcinoma sequence. Adenomatous polyposis coli (APC) mutations serve as the initiating event in adenoma formation. The ApcMin/+ mouse harbors a mutation in the APC gene, which is similar or identical to the mutation found in individuals with familial adenomatous polyposis and 70% of all sporadic CRC cases. Autophagy is a constitutive process required for proper cellular homeostasis. However, its role in intestinal adenoma formation is still controversial. Atractylenolide I (AT1) is a sesquiterpenoid that possesses various clinically relevant properties such as anti-tumor and anti-inflammatory activities. The role of AT1 on adenoma formation was tested in ApcMin/+ mice and its underlying mechanism in regulating autophagy was documented. D-dopachrome tautomerase (D-DT) was identified as a potential target of AT1 by an proteomics-based approach. The effects of p53 modification on autophgic flux was monitored in p53?/? and p53+/+ HCT116 cells. Small interfering RNA was used to investigate the function of Atg7 and D-DT on autophagy programme induce by AT1. AT1 effectively reduced the formation of adenoma and downregulated the tumorigenic proteins in ApcMin/+ mice. Importantly, AT1 stimulated autophagic flux through downregulating acetylation of p53. Activation of Sirt1 by AT1 was essential for the deacetylation of p53 and downregulation of D-DT. The lowered expression of COX-2 and β-catenin by AT1 were partly recovered by Atg7 knockdown. AT1 activates autophagy machinery to downregulate D-DT and reduce intestinal adenoma formation. This discovery provides evidence in vivo and in vitro that inducing autophagy by natural products maybe a potential therapy to ameliorate colorectal adenoma formation.  相似文献   

6.
This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic (‘Galia’) were subjected to 2-year (2014–2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.  相似文献   

7.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

8.
Stilbenes, including trans-resveratrol (3,4′,5-trihydroxy-trans-stilbene), are known to exert beneficial health effects and contribute to plant biotic stress resistance. Much remains to be discovered about the cell signaling pathways regulating stilbene biosynthesis. It has recently been shown that overexpression of the calcium-dependent protein kinase VaCPK20 gene considerably increased t-resveratrol accumulation in cell cultures of Vitis amurensis. In this study, we analyzed the involvement of other CDPK family members, VaCPK1 and VaCPK26, on stilbene synthesis and biomass production by cell cultures of V. amurensis. We showed that overexpression of the VaCPK1 and 26 genes induced production of stilbenes by 1.7–4.6-fold (for VaCPK1) and by 2.5–6.2-fold (for VaCPK26) in several independently established cell lines compared to the empty vector-transformed control. Using HPLC-UV-MS, we detected five stilbenes in the grape cells: t-resveratrol diglucoside, t-piceid, t-resveratrol, ε- and δ-viniferin. The VaCPK1- and VaCPK26-transformed calli were capable of producing 1.4–3.1 and 1.8–4.9 mg/l of t-resveratrol, respectively (up to 0.4 for and 0.6 mg/g of dry weight for VaCPK26 and VaCPK1, respectively), while the control line synthesized only 0.5 mg/l of t-resveratrol (0.07 mg/g DW). The up-regulation of t-resveratrol production in the VaCPK1- and VaCPK26-overexpressing grape calli correlated with a significant up-regulation of stilbene synthase (STS) gene expression, especially VaSTS7. The data indicate that VaCPK1 and 26 genes, which are close homologues of VaCPK20, are positive regulators of stilbene biosynthesis in grapevine.  相似文献   

9.
Glycolysis activation is one of the main features of energy metabolism in cancer cells that is associated with the increase in glycolytic enzyme synthesis, primarily, hexokinases (HKs), in many types of tumors. Conversely, in colorectal cancer (CRC) the decrease in the expression of HK2 gene, which encodes one of the key rate-limiting enzyme of glycolysis, was revealed, thus, the study of the mechanisms of its inhibition in CRC is of particular interest. To search for potential microRNAs, inhibiting the expression of HK2 in CRC, we have performed the analysis of data from “The Cancer Genome Atlas” (TCGA) and five microRNA–mRNA target interaction databases (TargetScan, DIANA microT, mirSVR (miRanda), PicTar, and miRTarBase) using original CrossHub software. Seven microRNAs containing binding site on mRNA HK2, which expression is negatively correlated with HK2 expression, were selected for further analysis. The expression levels of these microRNAs and mRNA HK2 were estimated by quantitative PCR on a set of CRC samples. It has been shown, that the expression of three microRNAs (miR-9-5p, -98-5p, and -199-5p) was increased and correlated negatively with mRNA level of HK2 gene. Thus, downregulation of HK2 gene may be caused by its negative regulation through microRNAs miR-9-5p, -98-5p, and -199-5p.  相似文献   

10.
Microbial adhesion to surfaces and the subsequent biofilm formation may result in contamination in food industry and in healthcare-associated infections and may significantly affect postoperative care. Some plants produce substances with antioxidant and antimicrobial properties that are able to inhibit the growth of food-borne pathogens. The aim of our study was to evaluate antimicrobial and anti-biofilm effect of baicalein, resveratrol, and pterostilbene on Candida albicans, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. We determined the minimum inhibitory concentrations (MIC), the minimum adhesion inhibitory concentration (MAIC), and the minimum biofilm eradication concentration (MBEC) by crystal violet and XTT determination. Resveratrol and pterostilbene have been shown to inhibit the formation of biofilms as well as to disrupt preformed biofilms. Our results suggest that resveratrol and pterostilbene appear potentially very useful to control and inhibit biofilm contaminations by Candida albicans, Staphylococcus epidermidis, and Escherichia coli in the food industry.  相似文献   

11.

Background

Colorectal sessile serrated adenoma/polyps (SSA/Ps) are considered early precursor lesions in the serrated neoplasia pathway. Recent studies have shown associations of SSA/Ps with lost MLH1 expression, a CpG island methylator phenotype, and BRAF mutations. However, the molecular biological features of SSA/Ps with early neoplastic progression have not yet been fully elucidated, owing to the rarity of cases of SSA/P with advanced histology such as cytologic dysplasia or invasive carcinoma. In this study, we aimed to elucidate the molecular biological features of SSA/Ps with dysplasia/carcinoma, representing relatively early stages of the serrated neoplasia pathway.

Methods

We performed immunostaining for β-catenin, MLH1, and mucins (e.g., MUC2, MUC5AC, MUC6, and CD10); targeted next-generation sequencing; and microsatellite instability (MSI) testing in 8 SSA/P lesions comprised of 4 SSA/Ps with high-grade dysplasia and 4 SSA/Ps with submucosal carcinoma.

Results

Lost MLH1 expression was found in 5 cases. All lesions studied were positive for nuclear β-catenin expression. Regarding phenotypic mucin expression, all lesions were positive for MUC2, but negative for CD10. MUC5AC and MUC6 positivity was observed in 7 cases. Genetically, the most frequently mutated gene was BRAF (7 cases), and other mutations were detected in FBXW7 (3 cases); TP53 (2 cases), and KIT, PTEN, SMAD4, and SMARCB1 (1 case each). Furthermore, 4 of 8 lesions were MSI-high and the remaining 4 lesions were microsatellite-stable (MSS). Interestingly, all 4 MSI-high lesions displayed MLH1 loss, 3 of which harbored a FBXW7 mutation, but not a TP53 mutation. However, 2 MSS lesions harbored a TP53 mutation, although none harbored a FBXW7 mutation.

Conclusions

SSA/Ps with dysplasia/carcinoma frequently harbored BRAF mutations. Activation of the WNT/β-catenin signaling pathway may facilitate the development of dysplasia in SSA/Ps and progression to carcinoma. Furthermore, our results suggested that these lesions might be associated with both MSI-high and MSS colorectal cancer, which might be distinguished by distinct molecular biological features such as lost MLH1 expression, FBXW7 mutations, and TP53 mutations.
  相似文献   

12.

Background

The directed differentiation of mesenchymal stem cells (MSCs) is tightly controlled by a complex network. Wnt signaling pathways have an important function in controlling the fate of MSCs. However, the mechanism through which Wnt/β-catenin signaling is regulated in differentiation of MSCs remains unknown. SIRT1 plays an important role in the regulation of MSCs differentiation.

Results

This study aimed to determine the effect of sirtuin 1 (SIRT1) on adipogenesis and myogenic differentiation of C3H10T1/2 cells. First, the MSC commitment and differentiation model was established by using 5-azacytidine. Using the established model, C3H10T1/2 cells were treated with SIRT1 activator/inhibitor during differentiation. The results showed that resveratrol inhibits adipogenic differentiation and improves myogenic differentiation, whereas nicotinamide promotes adipogenic differentiation. Notably, during commitment, resveratrol blocked adipocyte formation and promoted myotubes differentiation, whereas nicotinamide enhanced adipogenic potential of C3H10T1/2 cells. Furthermore, resveratrol elevated the expression of Cyclin D1 and β-catenin in the early stages. The luciferase assay showed that knockdown SIRT1 inhibits Wnt/β-catenin signaling, while resveratrol treatment or overexpression SIRT1 activates Wnt/β-catenin signaling. SIRT1 suppressed the expression of Wnt signaling antagonists sFRP2 and DACT1. Knockdown SIRT1 promoted adipogenic potential of C3H10T1/2 cells, whereas overexpression SIRT1 inhibited adipogenic differentiation and promoted myogenic differentiation.

Conclusions

Together, our results suggested that SIRT1 inhibits adipogenesis and stimulates myogenic differentiation by activating Wnt signaling.
  相似文献   

13.
Molecular genetic analysis of allelic deletions from the loci containing the tumor suppressor genes p16, p15, p19 (9p21), RB1 (13p14), PTEN (10q23), and TP53 (17p13); microsatellite instability; and activating mutations of K-RAS (codons 12 and 13) was performed in four different segments of sporadic colorectal cancer (CRC) in 11 patients. Intratumoral genetic heterogenity was detected in 9 out of 11 (81%) colorectal adenocarcinomas and was morphologically validated. Analysis of different segments of one tumor reported that not only intratumoral heterogeneity, but also the order of the appearance and distribution of molecular anomalies during tumorigenesis in sporadic CRC. K-RAS point mutations and anomalies of the p16-RB1-cyclin D pathway were assumed to occur prior to microsatellite instability and PTEN deletions during tumor progression.  相似文献   

14.
15.
Resveratrol has been the subject of numerous scientific investigations due to its health-promoting activities against a variety of diseases. However, developing feasible and efficient microbial processes remains challenging owing to the requirement of supplementing expensive phenylpropanoic precursors. Here, various metabolic engineering strategies were developed for efficient de novo biosynthesis of resveratrol. A recombinant malonate assimilation pathway from Rhizobium trifolii was introduced to increase the supply of the key precursor malonyl-CoA and simultaneously, the clustered regularly interspaced short palindromic repeats interference system was explored to down-regulate fatty acid biosynthesis pathway to inactivate the malonyl-CoA consumption pathway. Down-regulation of fabD, fabH, fabB, fabF, fabI increased resveratrol production by 80.2, 195.6, 170.3, 216.5 and 123.7%, respectively. Furthermore, the combined effect of these genetic perturbations was investigated, which increased the resveratrol titer to 188.1 mg/L. Moreover, the efficiency of this synthetic pathway was improved by optimizing the expression level of the rate-limiting enzyme TAL based on reducing mRNA structure of 5′ region. This further increased the final resveratrol titer to 304.5 mg/L. The study described here paves the way to the development of a simple and economical process for microbial production of resveratrol.  相似文献   

16.
17.
Invasive candidiasis is caused mainly by Candida albicans, but other Candida species have increasing etiologies. These species show different virulence and susceptibility levels to antifungal drugs. The aims of this study were to evaluate the usefulness of the non-conventional model Caenorhabditis elegans to assess the in vivo virulence of seven different Candida species and to compare the virulence in vivo with the in vitro production of proteinases and phospholipases, hemolytic activity and biofilm development capacity. One culture collection strain of each of seven Candida species (C. albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida metapsilosis, Candida orthopsilosis and Candida parapsilosis) was studied. A double mutant C. elegans AU37 strain (glp-4;sek-1) was infected with Candida by ingestion, and the analysis of nematode survival was performed in liquid medium every 24 h until 120 h. Candida establishes a persistent lethal infection in the C. elegans intestinal tract. C. albicans and C. krusei were the most pathogenic species, whereas C. dubliniensis infection showed the lowest mortality. C. albicans was the only species with phospholipase activity, was the greatest producer of aspartyl proteinase and had a higher hemolytic activity. C. albicans and C. krusei caused higher mortality than the rest of the Candida species studied in the C. elegans model of candidiasis.  相似文献   

18.
The reliability of analyses using real-time quantitative polymerase chain reaction (RT-qPCR) depends on the selection of appropriate reference genes to correct for sample-to-sample and run-to-run variations. The aim of the present study was to select the most suitable reference genes for gene expression analyses in tissue samples from coffee, Coffea arabica L. (Arabica) grown under well-watered (WW) and water-deficit (WD) conditions and C. canephora Pierre ex A. Froehner (Robusta) grown under WW conditions. Expression profiles and stabilities were evaluated for 12 reference genes in different tissues from C. arabica and for 8 genes in tissues from C. canephora. The web-based RefFinder tool, which combines the geNorm, NormFinder, Bestkeeper, and Delta-Ct algorithms, was employed to assess the stability of the tested genes. The most stable reference genes identified for all tissues grouped (WW/WD) of C. arabica were clathrin adaptor protein medium subunit (AP47), ubiquitin (UBQ), 60S ribosomal protein L39 (RPL39), and elongation factor 1α (EF1α), while class III alcohol dehydrogenase (ADH2), β-actin (ACT), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and ubiquitin (UBQ) genes were the most stable for all tissues grouped (WW) of C. canephora tissues. Validation by the expression level analysis of CaACO-like demonstrated that the use of the best and the worst set of reference genes produced different expression results. The results reinforce the general assumption that there is no universal reference gene and that it is essential to select the most appropriate gene for each individual experiment to apply adequate normalization procedures of RT-qPCR data.  相似文献   

19.
Familial adenomatous polyposis (FAP) is a hereditary predisposition to formation of colon polyps that can progress to colorectal cancer (CRC). The severity of polyposis varies substantially within families bearing the same germline mutation in the adenomatous polyposis coli (APC) tumour suppressor gene. The progressive step-wise accumulation of genetic events in tumour suppressor genes and oncogenes leads to oncogenic transformation, with driver alterations in the tumour protein p53 (TP53) gene playing a key role in advanced stage CRC. We analysed groups of pigs carrying a truncating mutation in APC (APC1311/+; orthologous to human APC1309/+) to study the influence of TP53 polymorphisms and expression on the frequency of polyp formation and polyp progression in early-stage FAP. Five generations of APC1311/+ pigs were examined by colonoscopy for polyposis severity and development. A total of 19 polymorphisms were found in 5′-flanking, coding, and 3′ untranslated regions of TP53. The distribution of TP53 genotypes did not differ between APC1311/+ pigs with low (LP) and high (HP) number of colon polyps. p53 mRNA expression was analysed in distally located normal mucosa samples of wild-type pigs, APC1311/+ LP and HP pigs, and also in distally located polyp samples histologically classified as low-grade (LG-IEN) and high-grade intraepithelial dysplastic (HG-IEN) from APC1311/+ pigs. p53 mRNA expression was found to be significantly elevated in HG-IEN compared to LG-IEN samples (p?= 0.012), suggesting a role for p53 in the early precancerous stages of polyp development.  相似文献   

20.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLH1. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号