首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study conservation of Castilleja levisecta Greenm., a globally endangered species was addressed through in vitro cryopreservation of shoot tips. In vitro cultures were successfully established using seedlings received from British Columbia, Canada. Shoot tips excised from in vitro propagated plants were cryopreserved using a droplet-vitrification method following optimization of individual protocol steps such as pre-culture, treatment with vitrification solutions, and unloading. The highest plant regrowth after cryopreservation (66%) was achieved when shoot tips were pre-cultured in 0.3 M sucrose for 17 h followed by 0.5 M sucrose for 4 h, incubated in an osmo-protectant solution (17.5% [v/v] glycerol and 17.5% [w/v] sucrose) for 20 min, exposed to vitrification solution A3 (37.5% [v/v] glycerol plus 15% [v/v] dimethylsulfoxide (DMSO) plus 15% [v/v] ethylene glycol (EG) plus 22.5% [w/v] sucrose) on ice for 40 min, and unloaded in 0.8 M sucrose solution for 30 min. Healthy plants were developed from cryopreserved shoot tips and propagated in vitro using nodal segments. Plants derived from in vitro culture and from cryopreserved tissues were successfully rooted and acclimated in a greenhouse with 100% survival rate. Acclimatized plants were reintroduced in a naturalized propagation area at the Conservation Nursery at Fort Rodd Hill, Canada. Twenty of 94 reintroduced plants (21%) survived the transit from lab to field and some had started to flower. This is the first report for cryopreservation of C. levisecta, an important step in conserving and re-introducing this critically imperiled species in nature.  相似文献   

2.
Conservation of Saccharum spp. germplasm as ex situ collections of plants has a high cost, and in natural conditions, the plants remain exposed to pests, pathogens, and natural disasters. Long-term preservation of plant germplasm is important for agricultural biodiversity and food safety, so the aim of this study was to develop a cryogenic procedure for cryopreservation of sugarcane germplasm. The first study compared droplet vitrification and encapsulation-vitrification techniques for cryopreservation of in vitro shoot tips of Saccharum spp. variety Halaii. The best regeneration rate (70.9%) was obtained from 45-min PVS2 vitrification solution-treated shoot tips via the droplet vitrification technique. This technique was tested on two other Saccharum sp. varieties, and the best regeneration rates for varieties NG 57-024 and H 83-6179 were 63.3 and 76.3%, respectively. Shoots derived from cryopreserved shoot tip buds developed well-formed roots, and were easily acclimated to greenhouse conditions. The second study evaluated genetic stability of the cryopreserved varieties using ten inter-simple sequence repeat primers. A total of 211 (Halaii), 198 (H83-6179), and 201 (NG 57-024) reproducible bands, ranging from 125 to 5500 bp, were scored with this technique. One hundred genetic stability was detected from Halaii and H 83-6179 whereas 98.5% genetic stability was detected from varieties of NG 57-024. The PCR reactions showed that there was no crucial variation on genetic stability for all cryopreserved varieties.  相似文献   

3.
Chrysanthemum morifolium ‘Hangju’ is a valuable medicinal plant. We previously reported cryopreservation of shoot tips of C. morifolium ‘Hangju’. The present study further evaluated greenhouse performance, assessed genetic stability and analyzed biochemical compounds in the greenhouse-grown plants regenerated from cryopreservation. The results showed that although some minor alternations were detected in early vegetative growth, there were no differences in major parameters of vegetative growth and flower production between the plants regenerated from cryopreservation and in vitro shoots (the control). Morphologies of leaves and flowers were identical between the two types of the plants. No polymorphic bands revealed by ISSR and RAPD, and no alternations at ploidy levels analyzed by FCM were found in the cryo-derived plants. The types and number of biochemical compounds analyzed by UPLC-MS/MS were identical between the two types of the plants. Quantitative analyses by HPLC showed no differences in the contents of the five selected biochemical compounds produced between the plants regenerated from cryopreservation and in vitro shoots. Therefore, cryopreservation would provide a technical platform for establishment of cryo-banking of Chrysanthemum germplasm with medicinal values.  相似文献   

4.
An efficient and broad-spectrum protocol for cryopreservation of Vitis spp. shoot tips by droplet-vitrification is reported. Shoot tips (1.0 mm) containing 5–6 leaf primordia (LPs) were precultured for 3 d with a preculture medium containing 0.3 M sucrose, 0.16 μM glutathione, and 0.14 μM ascorbic acid. Precultured shoot tips were treated for 20 min at 24°C with a loading solution composed of 2 M glycerol and 0.4 M sucrose, followed by exposure at 0°C to half-strength plant vitrification solution 2 (PVS2) for 30 min, and then full-strength PVS2 for 50 min. Dehydrated shoot tips were transferred into 2.5-μL PVS2 carried on aluminum foil, prior to a direct immersion in liquid nitrogen. With this method, an average shoot regrowth level of 50.5% was obtained from cryopreserved shoot tips in six V. vinifera genotypes (three wine cultivars, two table cultivars, and one rootstock) and two V. pseudoreticulata genotypes. Vegetative growth of the regenerants recovered from cryopreservation, significantly increased as the number of subculture cycles increased and was greater than the control after the third subculture following cryopreservation. Inter-simple sequence repeats (ISSR) and random amplification of polymorphic DNA (RAPD) analyses did not detect any polymorphic loci in the plants of V. vinifera L. cv. ‘Cabernet Sauvignon’ from cryopreserved shoot tips compared to the original cultures. This droplet-vitrification cryopreservation method provides a technical platform to set up cryobanks of Vitis spp.  相似文献   

5.
Endangered and rare species for which seed banking is not possible require alternative methods of ex situ conservation for long-term preservation. These methods depend primarily on cryopreservation methods, such as shoot tip cryopreservation, but there are few datasets with information on the long-term survival of shoot tips stored in liquid nitrogen. In this study, survival and genetic stability of shoot tips of the endangered species, Hedeoma todsenii, banked over multiple years were examined. In vitro cultures cryopreserved with both the encapsulation dehydration and the encapsulation vitrification methods showed good average survival after up to 13 yr of storage in liquid nitrogen. The application of droplet vitrification to this species increased survival significantly, with an average of 72%, compared with 24–45% survival obtained with other methods. As measured with microsatellite and sequence-related amplified polymorphism (SRAP) markers, the genetic stability of the same genotypes stored over different periods of time typically did not change. However, there was an average of 10.4% band loss between replicate samples that did indicate a potential change in DNA composition. These results demonstrate the use of shoot tip cryopreservation as an effective ex situ conservation tool for this species, but genetic stability of the cryopreserved tissues should be closely monitored.  相似文献   

6.
Arachis glabrata Benth (perennial peanut) is a rhizomatous legume with high forage value and great potential for soil conservation as well as it displays valuable plant genetic resources for the cultivated edible peanut improvement. In this study, we developed for the first time successful protocols for micropropagation and cryopreservation of A. glabrata. First fully expanded leaflets from greenhouse-growing plants were efficiently established in vitro (93%) and displayed high frequency of bud induction (58%) on MS medium with 6 mg L?1 1-fenil-3-(1,2,3-tiadiazol-5-il)urea [TDZ]. Whole plant regeneration was achieved via direct organogenesis by transferring the induced buds to MS media. Immature unexpanded leaves from micropropagated plants were effectively cryopreserved by using the droplet-vitrification technique. Maximum survival (~ 70%) and further regeneration (60–67%) were obtained by preconditioning immature leaves on semisolid MS with 0.3 M sucrose (1 d), exposing to loading solution consisting of 0.4 M sucrose plus 2 M glycerol (30 min) followed by glycerol-sucrose plant vitrification solution PVS3 (150 min in ice), and direct plunging into liquid nitrogen in droplets of PVS3 deposited on cryoplates. Tissues were rewarmed by plunging the aluminum foils directly in liquid MS enriched with 1.2 M sucrose (15 min) at room temperature. Growth recovery and plant regeneration were efficiently achieved via shoot organogenesis, and somatic embryogenesis by culturing cryostored explants on MS added with 6 mg L?1 TDZ. Genetic stability of plants derived from cryopreserved leaves was confirmed by random amplified polymorphic DNA markers. The protocols established in this study have great potential for rapid multiplication and conservation of selected A. glabrata genotypes.  相似文献   

7.
MicroRNA171 (miR171) is a highly conserved miRNA family, crucial for plant growth and development, and has been reported in Arabidopsis thaliana and tomato (Solanum lycopersicum), but the role of miR171 has not been explored in pear. In this study, an effort was made to decipher the mechanism underlying dwarf in ‘Zhongai 3’, of which the shoot length and shoot growth rate during the growing season were much less than those of the vigorous cultivar ‘Zaosu’, and the same for the indole-3-acetic acid (IAA) content in shoot tips after May 22, 2016. We identified a member of the miR171 family, which was most sensitive to IAA and targeted two genes conformed by 5′-RACE, and we named Pyr-miR171f. The two targets were named as PyrSCL6 and PyrSCL22, and contained a GRAS-conserved domain and encoded nucleus proteins. Quantitative RT-PCR analysis revealed that Pyr-miR171f was more abundant in ‘Zaosu’ shoot tips than in ‘Zhongai 3’ shoot tips, whereas the PyrSCL6 and PyrSCL22 mRNAs were more abundant in ‘Zhongai 3’ shoot tips than in ‘Zaosu’ shoot tips. The abundance of Pyr-miR171f and PyrSCL6 and PyrSCL22 mRNAs increased, but the trends were opposite between Pyr-miR171f and its target mRNAs in tissue culture seedlings treated by IAA. Our results suggest that IAA-induced miR171f negatively regulates the IAA signaling cascade via the GRAS pathway to maintain apical dominance. This work reveals a role for the miR171-SCL pathway in the dwarfing of ‘Zhongai 3’, and provides a theoretical basis for dwarf pear breeding.  相似文献   

8.
Vegetative propagation of plants, such as garlic (Allium sativum L.), is known to facilitate the transmission of several virus species throughout the plant cycles. This process favors the onset of complex diseases by accumulation of different species in the same plant, resulting in decreased productivity and production quality. Studies have reported the use of cryotherapy of shoot tips, or meristematic clusters, as an efficient tool for obtaining virus-free plants. This study aimed to evaluate the ability of cryotherapy to eradicate virus complex in garlic plants. Bulbils naturally infected with Onion Yellow Dwarf Virus (OYDV), Leek Yellow Strip Virus (LYSV) and Garlic Common Latent Virus (GCLV) were employed as explants for different virus-cleaning treatments tested. Dot-ELISA and RT-PCR analysis were used to demonstrate the presence/absence of virus complex, and histological analysis was also performed to confirm these results. Five days after cryotherapy, structural analysis revealed that cooling had caused cell damage, as indicated by the increased vacuolization of cells after cryotherapy, as well as slight plasmolysis after thermotherapy. Immunolocalization analysis indicated the subcellular distribution of OYDV in garlic shoot tips in association with the development of plasmodesmata, while no OYDV was detected in the first cell layers of the meristematic dome. Cryotherapy successfully removed virus complex, resulting in virus-free plants with enhanced efficiency, compared to conventional meristem culture-based techniques. Moreover, the synergistic effects of cryotherapy and thermotherapy resulted in a 40 % survival rate of shoot tips and the regeneration of 90, 100 and 80 % OYDV-, LYSV- and GCLV-free plants, respectively.  相似文献   

9.
The objective of the present study was the cryopreservation of monotypic endemic Hladnikia pastinacifolia Rchb. shoot tips from an in vitro culture, via encapsulation-dehydration (ED) or encapsulation-vitrification (EV). For all tested genotypes, the highest rates of shoot regrowth and multiplication were obtained after overnight preculture in 0.4 M sucrose, encapsulation in Murashige and Skoog (MS) medium with 0.4 M sucrose and 1 M glycerol, followed by polymerization in 3% (w/v) Na-alginate in MS with 0.4 M sucrose. Optimal osmoprotection was achieved for ED with 0.4 M sucrose plus 1 M glycerol and for EV with 0.4 M sucrose plus 2 M glycerol. The best dehydration time for ED was 150 min in a desiccation chamber with silica gel, and the best vitrification time for EV was 85 min in plant vitrification solution 2 (PVS2). For ED, dehydration for 150 min resulted in explant water content of 22%. When the encapsulation method was combined with ED, 53% regrowth was achieved, and when it was combined with EV, 64% regrowth was achieved. Both methods could become applicable for the long-term cryopreservation of H. pastinacifolia germplasm, although EV was faster and resulted in better final regrowth success. Genetic stability analysis of cryopreserved plant samples was carried out for two genotypes, using random amplified polymorphic DNA (RAPD) markers to compare the two different cryopreservation protocols. Significant genetic differences between the genotypes were detected and a low level of genomic variation was observed.  相似文献   

10.
Mycorrhizal symbiosis often displays low specificity, except for mycoheterotrophic plants that obtain carbon from their mycorrhizal fungi and often have higher specificity to certain fungal taxa. Partially mycoheterotrophic (or mixotrophic, MX) plant species tend to have a larger diversity of fungal partners, e.g., in the genus Pyrola (Monotropoideae, Ericaceae). Preliminary evidence however showed that the Japanese Pyrola japonica has preference for russulacean fungi based on direct sequencing of the fungal internal transcribed spacer (ITS) region from a single site. The present study challenges this conclusion using (1) sampling of P. japonica in different Japanese regions and forest types and (2) fungal identification by ITS cloning. Plants were sampled from eight sites in three regions, in one of which the fungal community on tree ectomycorrhizal (ECM) tips surrounding P. japonica was also analyzed. In all, 1512 clone sequences were obtained successfully from 35 P. japonica plants and 137 sequences from ECM communities. These sequences were collectively divided into 74 molecular operational taxonomic units (MOTUs) (51 and 33 MOTUs, respectively). MOTUs from P. japonica involved 36 ECM taxa (96 % of all clones), and 17 of these were Russula spp. (76.2 % of all clones), which colonized 33 of the 35 sampled plants. The MOTU composition significantly differed between P. japonica and ECM tips, although shared species represented 26.3 % of the ECM tips community in abundance. This suggests that P. japonica has a preference for russulacean fungi.  相似文献   

11.
The two targeted species of this study, Micranthocereus flaviflorus subsp. densiflorus and M. polyanthus subsp. alvinii, are endemic to the state of Bahia and have ornamental value. The main goal of this work was to micropropagate these species and to evaluate the genetic stability of the regenerated plants. To do so, shoots originated from in vitro germinated plants were inoculated in MS/2 (Murashige, Skoog, Physiol Plant 15:473–497, 1962) media containing 1.34 μmol L?1 of α-naphthaleneacetic acid (NAA) for morphogenesis induction. This was repeated for three consecutive subcultures, and the subcultured shoots were designated by order of production as S1, S2 and S3. Retention of morphogenic potential and acceleration of organogenic response was observed after the three subsequent propagation events, so that if shoots were used as explant source the in vitro propagation of M. flaviflorus could be achieved in 90 days and that of M. polyanthus could be optimized to 60 days of duration. In order to perform genetic stability analysis along subcultures, ISSR markers were used and genetic variation between shoots of each subculture and their donor plant was measured with Jaccard’s similarity coefficient. This analysis revealed high genetic stability in the in vitro propagation of all the donor plants of M. flaviflorus and M. polyanthus in regards to three consecutive shoot subcultures, in which similarities were 100% for both species. The study of a greater number of subcultures is suggested to assess morphogenesis potential and genetic fidelity in long term.  相似文献   

12.
This is the first report on Agrobacterium rhizogenes-mediated transformation of Withania somnifera for expression of a foreign gene in hairy roots. We transformed leaf and shoot tip explants using binary vector having gusA as a reporter gene and nptII as a selectable marker gene. To improve the transformation efficiency, acetosyringone (AS) was added in three stages, Agrobacterium liquid culture, Agrobacterium infection and co-culture of explants with Agrobacterium. The addition of 75 μM AS to Agrobacterium liquid culture was found to be optimum for induction of vir genes. Moreover, the gusA gene expression in hairy roots was found to be best when the leaves and shoot tips were sonicated for 10 and 20s, respectively. Based on transformation efficiency, the Agrobacterium infection for 60 and 120 min was found to be suitable for leaves and shoot tips, respectively. Amongst the various culture media tested, MS basal medium was found to be best in hairy roots. The transformation efficiency of the improved protocol was recorded 66.5 and 59.5?% in the case of leaf and shoot tip explants, respectively. When compared with other protocols the transformation efficiency of this improved protocol was found to be 2.5 fold higher for leaves and 3.7 fold more for shoot tips. Southern blot analyses confirmed 1–2 copies of the gusA transgene in the lines W1-W4, while 1–4 transgene copies were detected in the line W5 generated by the improved protocol. Thus, we have established a robust and efficient A. rhizogenes mediated expression of transgene (s) in hairy roots of W. somnifera.  相似文献   

13.
Phelipanche and Orobanche spp. (broomrapes) are economically important parasitic weeds, causing severe damage to many agricultural crops. However, conventional methods to control these parasitic weeds are often not effective. Targeting molecular and biochemical processes involved in the establishment of the connection between the parasite and the host may offer a new perspective for control. However, progress in the understanding of these processes is hampered by the fact that genetic transformation and regeneration of these parasites is difficult if not impossible due to their specific lifecycle. Phelipanche and Orobanche spp. are holoparasites that need to attach to the roots of a host plant to get their assimilates, nutrients and water to develop and reproduce. The present study describes a highly efficient genetic transformation and regeneration protocol for the root holoparasitic Phelipanche ramosa. We present a new transformation system for P. ramosa using Agrobacterium rhizogenes MSU440 carrying a non-destructive selection marker gene coding for a red fluorescent protein (DsRed1). Using this protocol up to 90% transformation efficiency was obtained. We transformed 4 weeks old P. ramosa calli and transgenic calli expressing DsRed1 were then cultured on host plants. For the first time, we present shoot and flower development of the transgenic parasitic plant P. ramosa after successful connection of transgenic calli with the host plant roots. Moreover, we also present, for the first time, growth and development of P. ramosa shoots and flowers in vitro in the absence of a host plant.  相似文献   

14.
15.
A rapid and efficient method for in vitro direct plant regeneration from immature leaf roll explants of Saccharum officinarum L. (sugarcane) cv. Co 86032 was developed by the application of exogenous polyamines (PA). The effect of explant source from apical meristems and pre-culture of explants in the dark on shoot regeneration was studied. Adventitious shoot regeneration occurred on the proximal regions of immature leaf roll explants when pre-incubated in the dark for 2 wk and the regeneration response was decreased from the middle to distal end. A higher number of direct shoots (130 primary shoots explant?1) and multiple shoots (657 secondary shoots explant?1), were obtained with a combination of spermidine (103.27 μM), spermine (49.42 μM), and putrescine (31.04 μM) along with plant growth regulators. Shoot induction was increased up to twofold and multiplication was increased up to threefold in the medium supplemented with PA. Profuse rooting was observed in putrescine (93.12 μM), spermidine (68.84 μM), and spermine (24.71 μM), with mean number of 57 roots. A twofold increase in the number of roots was observed in medium supplemented with PA with respect to control cultures, which facilitated the successful transplantation and acclimatization process of in vitro propagated sugarcane plants. Histology and scanning electron microscopy analyses supported adventitious direct shoot regeneration from immature leaf roll explants. The genetic stability of in vitro regenerated plants was confirmed using start codon targeted polymorphism marker system.  相似文献   

16.
The effects of various combinations of plant growth regulators on regeneration potential from seedling-derived leaf tissues of Brassica oleracea L. var. botrytis were evaluated. Callus was induced from 2-wk-old leaf explants. The explants were incubated on Gamborg’s (MSB5) medium. The maximum frequency of callus induction (85.56%) was recorded on MSB5 medium supplemented with 9.1 μM thidiazuron (TDZ) and 0.5 μM α-naphthaleneacetic acid (NAA). Optimum shoot induction (54.44%) was obtained on MSB5 medium supplemented with 4.5 μM TDZ and 0.5 μM NAA. The maximum number of shoots per explant (5.33) was recorded on MSB5 medium with 4.5 μM TDZ and 0.5 μM NAA, whereas the maximum shoot length (4.86 cm) was recorded for shoots cultured on MSB5 medium supplemented with 4.5 μM TDZ and 5.7 μM gibberellic acid (GA3). However, optimum root induction (71.11%) occurred on half-strength Murashige and Skoog basal medium supplemented with 4.9 μM indole-3 butyric acid (IBA). Studies on the antioxidant activity of superoxide dismutase, ascorbate peroxidase, and peroxidase in seedlings, callus, regenerated shoots, and regenerated plantlets cultured on 4.5 μM TDZ and 0.5 μM NAA medium revealed the roles of these key antioxidative enzymes in callus induction and regeneration. The genetic stability of the regenerated plantlets was assessed using inter simple sequence repeat primers. The monomorphic amplification products confirmed true-to-type in vitro regenerated plants. This in vitro regeneration method can be useful in the large-scale production of genetically uniform plants, for genetic transformation, and conservation of elite germplasm of plant species.  相似文献   

17.
18.
Wild rice genotypes are rich in genetic diversity. This has potential to improve agronomic rice by allele mining for superior traits. Late embryogenesis abundant (LEA) proteins are often associated with desiccation tolerance and stress signalling. In the present study, a group 3 LEA gene, Wsi18 from the wild rice Oryza nivara was expressed under its own inducible promoter element in stress susceptible cultivated indica rice (cv. IR20). The resulting transgenic plants cultivated in a greenhouse showed enhanced tolerance to soil water deficit. Transgenic plants had higher grain yield, plant survival rate, and shoot relative water content compared to wild type (WT) IR20. Cell membrane stability index, proline and soluble sugar content were also greater in transgenic than WT plants under water stress. These results demonstrate the potential for improving SWS tolerance in agronomically important rice cultivar by incorporating Wsi18 gene from a wild rice O. nivara.  相似文献   

19.
Many cryopreservation techniques are currently available, and it is common for new modifications to be developed for individual crops or specific genotypes. In this study, results of variations of the PVS2 cryopreservation protocol are compared to provide evidence for the suitability of a standard form of this technique for cryopreservation of a range of fruit, berry crops, and potato. Shoot cultures of Malus, Solanum, Lonicera, and Berberis were tested with variations of cold acclimation, pretreatment media, and PVS2 exposure times. A general protocol with some modifications was produced that was suitable for all four genera. The regenerative capacity of shoot tips after cryopreservation by this method exceeded a mean of 50% for Malus, Solanum, Lonicera, and Berberis, which is sufficient for setting storage in a cryobank. After liquid nitrogen storage, the shoot cultures that survived had a healthy appearance and developed rapidly. For each species tested, the only optimization required was the preparation of donor plants by cold acclimation and pretreatment. The choice of one common method simplifies the methodology for conducting experiments and storing a range of germplasm. The use of the PVS2 vitrification method with a 0.3-M sucrose pretreatment is multiuse and can be recommended as the most effective method for the cryopreservation of shoot tips from many plant species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号