首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Success in oocyte cryopreservation is limited and several factors as cryoprotectant type or concentration and stage of oocyte meiotic maturation are involved. The aim of the present study was to evaluate the effect of maturation stage and ethylene glycol (EG) concentration on survival of bovine oocytes after vitrification. In experiment 1, kinetics of oocyte in vitro maturation (IVM) was evaluated. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), and metaphase II (MII) oocytes were found predominantly at 0, 0–10, 10–14, and 18–24 h of IVM, respectively. In experiment 2, in vitro embryo development after in vitro fertilization (IVF) of oocytes exposed to equilibrium (ES) and vitrification solution VS-1 (EG 30%), or VS-2 (EG 40%) at 0, 12 or 18 h of IVM was evaluated. Only blastocyst rate from oocytes vitrified in SV-2 after 18 h of IVM was different from control oocytes. Hatched blastocyst rates from oocytes vitrified in VS-1 after 12 and 18 h, and SV-2 after 18 h of IVM were different from unvitrified oocytes. In experiment 3, embryo development was examined after IVF of oocytes vitrified using VS-1 or VS-2 at 0, 12 or 18 h of IVM. Rates of blastocyst development after vitrification of oocytes in VS-1 at each time interval were similar. However, after vitrification in VS-2, blastocyst rates were less at 18 h than 0 h. Both cleavage rates and blastocyst rates were significantly less in all vitrification groups when compared to control group and only control oocytes hatched. In conclusion, both EG concentration and stage of meiotic maturation affect the developmental potential of oocytes after vitrification.  相似文献   

2.
Zinc (Zn) is an essential trace element that is required during mammalian developmental processes. The objective of this study was to investigate the effects of Zn supplementation during in vitro maturation (IVM) on the developmental capacity of yak (Bos grunniens) oocytes. Cumulus expansion, nuclear maturation, intracellular glutathione (GSH), reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, subsequent embryonic development, and the expression of Zn transporters (ZnTs) and Zrt and Irt-like proteins (ZiPs) were evaluated. The Zn concentrations in yak plasma and follicular fluid were 0.740?±?0.012 and 0.382?±?0.009 μg/mL, respectively. The cumulus expansion did not show significant differences in COCs after matured with or without Zn supplementation (P?>?0.05). The intracellular GSH was higher in oocytes matured with 1 or 2 mg/L Zn than in control group (0 mg/L) (P?<?0.05). However, ROS levels of oocytes matured with 1 or 2 mg/L Zn were reduced significantly compared with the control and 0.5 mg/L groups (P?<?0.05). The SOD activity was increased significantly after Zn supplementation. The cleavage rate was not significantly different after Zn supplementation (P?>?0.05). Percentages of matured oocytes that developed into the blastocyst stage after IVF were 47.9, 50.5, 60.4, and 58.9% for 0, 0.5, 1, and 2 mg/L Zn groups, respectively. Gene expression analysis revealed that the expression patterns associated with Zn were changed after Zn supplementation. In conclusion, Zn supplementation to IVM improved yak oocyte maturation and subsequent development by increasing GSH and SOD activity, decreasing ROS in oocytes.  相似文献   

3.
Repaglinide is a hypoglycemic drug, causing depolarization of the cell membrane, opening the voltage-gated calcium channels, and then increasing intracellular calcium in the pancreatic B cells by inhibition of the K-ATP-sensitive channels. Oocyte in vitro maturation (IVM) is influenced by different factors such as calcium signaling. In this study, we examined the effects of repaglinide on in vitro maturation and fertilization ability of mouse oocyte. Immature oocytes were isolated from female Naval Medical Research Institute mice which are 6–8 wk old mechanically and then cultured in 30 μl droplets of T6 medium with different concentrations of repaglinide. The control group did not receive repaglinide (R0). Treatment groups received different concentrations (5, 10, and 100 nM and 1 and 10 μM) of repaglinide (R1, R2, R3, R4, and R5, respectively). Oocyte in vitro maturation rate was assessed after 24 h. In vitro fertilization was performed using metaphase II oocytes obtained from R0 and R4 treatments. Embryo cleavage rate was calculated at 48 h post-IVF. Chi-square test was used for evaluating difference between control and treatment groups (p < 0.05). Oocyte maturation rate after 24 h in treatment groups R2, R3, R4, and R5 was significantly higher than that in the control (p < 0.05). Supplementation of medium with 1 μM of repaglinide (R4) during IVM significantly improved outcome of embryo cleavage rate than control at 48 h post-IVF (p < 0.05). In conclusion, repaglinide can be considered as an effective agent for in vitro oocyte maturation and embryo cleavage.  相似文献   

4.
A series of experiments were designed to study the effect of elevated temperatures on developmental competence of bovine oocytes and embryos produced in vitro. In experiment 1, the effect of heat shock (HS) by a mild elevated temperature (40.5°C) for 0, 30, or 60 min on the viability of in vitro matured (IVM) oocytes was tested following in vitro fertilization (IVF) and culture. No significant difference was observed between the control (39°C) and the heat‐treated groups in cleavage, blastocyst formation, or hatching (P > 0.05). In experiment 2, when the HS temperature was increased to 41.5°C, neither the cleavage rate nor blastocyst development was affected by treatment. However, the rate of blastocyst hatching appeared lower in the HS groups (13% in control group vs. 3.9% and 5.6% in 30 min and 60 min, respectively; P < 0.05). When IVM oocytes were treated at 43°C prior to IVF (experiment 3), no difference was detected in blastocyst and expanded blastocyst development following heat treatment for 0, 15, or 30 min, but heat treatment of oocytes for 45 or 60 min significantly reduced blastocyst and expanded blastocyst formation (P < 0.05). In experiment 4, the thermotolerance of day 3 and day 4 bovine IVF embryos were compared. When embryos were pre‐treated with a mild elevated temperature (40.5°C) for 1 hr, and then with a higher temperature (43°C) for 1 hr, no improvement in thermotolerance of the embryos was observed as compared to those treated at 43°C alone. However, a higher thermotolerance was observed in day 4 than day 3 embryos. In conclusion, treatment at 43°C, but not 40.5°C or 41.5°C significantly reduced oocyte developmental competence. An increase in thermotolerance was observed from day 3 to day 4 of in vitro embryonic development, which corresponds to the maternal to zygotic transition of gene expression in bovine embryos. Mol. Reprod. Dev. 53:336–340, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
AIM: To determine whether maturation and subsequent blastocyst development of in vitro matured oocytes can be improved by in vivo follicle stimulating hormone (FSH) or human chorionic gonadotrophin (hCG) priming, using a mouse model. EXPERIMENTAL DESIGN: Five groups of oocytes were used: in vivo control, in vitro matured (IVM) control, IVM after 24 h in vivo priming with FSH, IVM after 48 h in vivo priming with FSH and IVM after 16 h in vivo priming with hCG. In vitro fertilization (IVF) was performed on all groups.Oocyte maturation, fertilization, blastocyst development rates and blastocyst cell numbers were assessed for all groups. RESULTS: Significant improvement in oocyte maturation was observed in the two FSH priming groups compared with the IVM control group (P<0.005 and P<0.001, respectively). There were no significant differences in fertilization between all five groups. Blastocyst development was significantly higher in the in vivo control compared to the IVM groups (P<0.001). No significant differences were observed in blastocyst cell numbers among all five groups. CONCLUSIONS: While FSH priming improves the maturation rate of IVM oocytes, FSH or hCG priming does not improve development to the blastocyst stage.  相似文献   

6.
Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.  相似文献   

7.
The developmental competence of bovine follicular oocytes that had been meiotically arrested with the phosphokinase inhibitor 6-dimethylaminopurine (6-DMAP) was studied. After 24 h in vitro culture with 2 mM 6-DMAP, 85 ± 12% of the oocytes were at the germinal vesicle stage compared to 97 ± 3% at the start of culture (P > 0.05). After release of the 6-DMAP inhibition, followed by 24 h IVM, 82 ± 18% were at MII stage, compared with 93 ± 7% in the control group (P > 0.05). The 6-DMAP oocytes displayed a much higher frequency of abnormal MII configurations than the control oocytes (67% vs 23%; P < 0.0001). In addition spontaneous oocyte activation was more frequent than among control oocytes (5% vs 0.3%; P 0.0006). After IVF of 6-DMAP oocytes, normal fertilization was lower (76 ± 8% vs 89 ± 7%; P < 0.01), oocyte activation higher (11 ± 5% vs 2 ± 2%; P < 0.01), and polyspermy slightly but not significantly higher (8 ± 7% vs 4 ± 4%; P > 0.05), compared with the control group. Cleavage was lower (61 ± 13% vs 81 ± 6%; P < 0.001), as well as day 8 blastocyst formation (17 ± 7% vs 36 ± 8%; P < 0.001). The MII kinetics was different for 6-DMAP and control oocytes. Maximum MII levels were reached at 22 h IVM in both groups, but 50% MII was reached at 17 h in 6-DMAP oocytes, compared to 20 h in control oocytes. Ultrastructure of MII oocytes was similar in the two groups, but in 6-DMAP oocytes the ooplasmic vesicle pattern at GV was at a more advanced stage than in control oocytes. In conclusion, 6-DMAP exposure of GV oocytes prior to IVM induce asynchronous cytoplasmic maturation, leading to aberrant MII kinetics. Thus, at the time of insemination a smaller cohort of oocytes will be at the optimal stage for normal fertilization and subsequent blastocyst development. Mol. Reprod. Dev. 50:334–344, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Little is known about mitochondrial DNA (mtDNA) replication during oocyte maturation and its regulation by extracellular factors. The present study determined the effects of supplementation of maturation medium with porcine follicular fluid (pFF; 0, 10%, 20%, and 30%) on mtDNA copy number and oocyte maturation in experiment 1; the effects on epidermal growth factor (EGF; 10 ng/mL), neuregulin 1 (NRG1; 20 ng/mL), and NRG1 + insulin-like growth factor 1 (IGF1; 100 ng/mL + NRG1 20 ng/mL), on mtDNA copy number, oocyte maturation, and embryo development after parthenogenic activation in experiment 2; and effects on embryo development after in vitro fertilization in experiment 3. Overall, mtDNA copy number increased from germinal vesicle (GV) to metaphase II (MII) stage oocytes after in vitro maturation (GV: 167 634.6 ± 20 740.4 vs. MII: 275 131.9 ± 9 758.4 in experiment 1; P < 0.05; GV: 185 004.7 ± 20 089.3 vs. MII: 239 392.8 ± 10 345.3 in experiment 2; P < 0.05; Least Squares Means ± SEM). Supplementation of IVM medium with pFF inhibited mtDNA replication (266 789.9 ± 11 790.4 vs. 318 510.1 ± 20 377.4; P < 0.05) and oocyte meiotic maturation (67.3 ± 0.7% vs. 73.2 ± 1.2%, for the pFF supplemented and zero pFF control, respectively; P < 0.01). Compared with the control, addition of growth factors enhanced oocyte maturation. Furthermore, supplementation of NRG1 stimulated mitochondrial replication, increased mtDNA copies in MII oocytes than in GV oocytes, and increased percentage of blastocysts in both parthenogenetic and in vitro fertilized embryos. In this study, mitochondrial biogenesis in oocytes was stimulated during in vitro maturation. Oocyte mtDNA copy number was associated with developmental competence. Supplementation of maturation medium with NRG1 increased mtDNA copy number, and thus provides a means to improve oocyte quality and developmental competence in pigs.  相似文献   

9.
We investigated effects of invasive adenylate cyclase (iAC), 3-isobutyl-1-methylxanthine (IBMX) and dibutyryl cyclic AMP (dbcAMP) on porcine oocyte in vitro maturation (IVM), in vitro fertilisation (IVF) and subsequent embryonic development. Porcine oocytes were collected in Hepes-buffered NCSU-37 supplemented with or without 0.1 microg/ml iAC and 0.5 mM IBMX. IVM was performed in a modified NCSU-37 supplemented with or without 1 mM dbcAMP for 22 h and then without dbcAMP for an additional 24 h. After IVF, oocytes were cultured in vitro for 6 days. After 12 h of IVM, no difference in nuclear status was observed irrespective of supplementation with these chemicals during collection and IVM. At 22 h, most (95%) of the oocytes cultured with dbcAMP remained at the germinal vesicle (GV) stage, whereas 44.3% of the oocytes cultured without dbcAMP underwent GV breakdown. At 36 h, oocytes cultured with dbcAMP had progressed to prometaphase I or metaphase I (MI) (32.6% and 49.3%, respectively), whereas non-treated oocytes had progressed further to anaphase I, telophase I or metaphase II (MII) (13.6%, 14.3% and 38.0%, respectively). At 46 h, the rate of matured oocytes at MII was higher in oocytes cultured with dbcAMP (81%) than without dbcAMP (57%), while the proportion of oocytes arrested at MI was lower when cultured with dbcAMP (15%) than without dbcAMP (31%). The rate of monospermic fertilisation was higher when oocytes were cultured with dbcAMP (21%) than without dbcAMP (9%), with no difference in total penetration rates (58% and 52%, respectively). The blastocyst rate was higher in oocytes cultured with dbcAMP (32%) than without dbcAMP (19%). These results suggest that a change in intracellular level of cAMP during oocyte collection does not affect maturational and developmental competence of porcine oocytes and that synchronisation of meiotic maturation using dbcAMP enhances the meiotic potential of oocytes by promoting the MI to MII transition and results in high developmental competence by monospermic fertilisation.  相似文献   

10.
Butyrolactone-I (BL-I) and roscovitine (ROSC) are selective inhibitors of the cyclin-dependent kinases, and both have been shown to reversibly inhibit meiotic resumption in cattle oocytes for 24 hr without having a negative affect on subsequent development to the blastocyst stage. The aim of the present study was to describe the morphological changes occurring in fully grown immature and in vitro matured bovine oocytes following exposure to either BL-I or ROSC for 24 hr at concentrations known to be consistent with normal development. Immature bovine cumulus oocyte complexes, recovered from the ovaries of slaughtered heifers, were incubated for 24 hr in the presence of one of the inhibitors. They were then either fixed immediately and processed for transmission electron microscopy (TEM), or cultured for a further 24 hr in the absence of the inhibitor, in conditions permissive to maturation, and subsequently processed for TEM. A control group of oocytes were processed for TEM immediately upon recovery (0 hr) or following in vitro maturation (IVM) for 24 hr. In general, incubation with either inhibitor disrupted the integrity of the surrounding cumulus cells and affected their subsequent expansion during IVM. Within the oocyte cytoplasm, swelling of the mitochondrial cristae was immediately noticeable following meiotic inhibition in the presence of ROSC, while an increased population of pleomorphic mitochondria and mitochondria with electron lucent matrices following BL-I treatment was not observed until after the subsequent IVM period. Both inhibitors caused degeneration of the cortical granules, effectively reducing the population, most noticeably following IVM. At the level of the nucleus, both inhibitory treatments caused convolution of the nuclear membrane, furthermore, aberrant structures were observed within the nucleoplasm of ROSC-treated cumulus oocyte complexes (COCs). In conclusion, while it has been shown that inhibition of meiotic resumption using specific cdk inhibitors is possible and that such oocytes are capable of undergoing maturation, fertilization, and early embryo development, there is as yet no definitive proof that oocytes treated in this way can ultimately give rise to normal offspring. We have shown here that some modifications are induced in the oocytes at the ultrastructural level. Whether or not these modifications are compatible with normal gestation and the birth of a live calf remain to be elucidated.  相似文献   

11.
Investigations of oocyte in vitro maturation within a mouse model   总被引:3,自引:0,他引:3  
This study attempted to develop a 'less meiotically competent' murine model for oocyte in vitro maturation (IVM), which could more readily be extrapolated to human clinical assisted reproduction. Oocyte meiotic competence was drastically reduced upon shortening the standard duration of in vivo gonadotrophin stimulation from 48 h to 24 h, and by selecting only naked or partially naked germinal vesicle oocytes, instead of fully cumulus enclosed oocyte complexes. With such a less meiotically competent model, only porcine granulosa coculture significantly enhanced the oocyte maturation rate in vitro, whereas no significant enhancement was observed with macaque and murine granulosa coculture. Increased serum concentrations and the supplementation of gonadotrophins, follicular fluid and extracellular matrix gel within the culture medium did not enhance IVM under either cell-free or coculture conditions. Culture medium conditioned by porcine granulosa also enhanced the maturation rate, and this beneficial effect was not diminished upon freeze-thawing. Enhanced IVM in the presence of porcine granulosa coculture did not, however, translate into improved developmental competence, as assessed by in vitro fertilization and embryo culture to the blastocyst stage.  相似文献   

12.
Experiments were conducted to assess the morphological viability and in vitro developmental potential of bovine oocytes after exposure to Ethylene Glycol‐bis(‐aminoethyl Ether) N,N,N,N‐Tetra‐acetic Acid (EGTA) prior to slow freezing. Different concentrations of EGTA (0, 1, 5 and 10 mM) and exposure intervals (5, 10 and 15 min) were tested on immature (GV) and in vitro matured (IVM) oocytes equilibrated in 1.5 mM propylene glycol (PG) without (experiment 1) or with slow freezing (experiment 2). In addition, PG and ethylene glycol (EG) were compared for cryoprotective efficacy. In vitro maturation (IVM), in vitro fertilization (IVF) and embryo culture (IVC) were performed in defined conditions. Pretreatment of both types of oocytes with 1 mM EGTA for 5 min without freezing yielded morphological and functional results comparable to those obtained for controls while results from higher concentrations of EGTA were lower (P < 0.05). Higher rates of freeze‐thaw survival and embryonic development were obtained after pretreating GV oocytes with 1 or 5 mM EGTA for 5 min. Similarly, better results were obtained when IVM oocytes were pretreated with 1 mM EGTA for either 5 or 10 min. When pretreated with 1 mM EGTA for 5 min and frozen with PG IVM oocytes exhibited higher survival rates (P < 0.05) than those frozen with EG. However, no significant differences were observed in the in vitro development of surviving GV or IVM oocytes frozen with either PG or EG. Results suggest that a prefreeze treatment with 1 mM EGTA for 5 min can enhance oocyte viability. Conditions described enabled blastocyst development of 2.9% of GV oocytes and 8.0% of IVM oocytes after cryopreservation and IVF. Mol. Reprod. Dev. 52:86–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
Maintaining oocytes at the germinal vesicle (GV) stage in vitro may permit enhanced acquisition of the developmental competence. The objective of the current study was to evaluate the nuclear and cytoplasmic maturation in vitro of porcine oocytes after pretreatment with S-roscovitine (ROS). Cumulus oocyte complexes (COC) were treated with 50 microM ROS for 48 h and then matured for various lengths of time in a conventional step-wise in vitro maturation (IVM) system by using dibutyryl cyclic AMP. The COC that were matured in the same system for 44 h without pretreatment with ROS were used as the control group. At various periods after the start of IVM, oocytes were assessed for the meiotic stages and subjected to in vitro fertilization (IVF) with fresh spermatozoa. The ROS treatment inhibited GV breakdown of 94.4% oocytes, with the majority arrested at the GV-I stage (67.4%). Maximum maturation rate to the metaphase-II stage after ROS treatment was achieved by 44 h of IVM (92.1%) and no differences were observed with control oocytes (95.0%). Penetration rate was correlated to the maturation rate. The duration of IVM had no effects on polyspermy and male pronuclear (MPN) formation rates at 8 h post insemination (hpi), whereas both rates increased at 22 hpi. Direct comparison with controls assessed at 22 hpi confirmed a lesser MPN formation in ROS-treated oocytes (73.7% compared with 53.6%). Glutathione (GSH) concentrations were less in oocytes treated with ROS than in control oocytes (5 compared with 7.7 pmol/oocyte) as well as blastocyst rate (22.0% compared with 38.1%, respectively). These results demonstrate that cytoplasmic maturation in porcine oocytes pretreated with ROS for 48 h did not equal that of control oocytes in the current IVM system.  相似文献   

14.
The development of a bovine in vitro embryo production system where individual oocytes could be followed through to the morula or blastocyst stage would be of interest to several fields of study and would allow us to characterise developmentally competent oocytes and their corresponding follicular environment. Several studies have, however, reported significantly reduced embryo development when oocytes or embryos were cultured individually compared to in groups. The aim of this study was to establish such an embryo production system, with embryo development rates similar to that observed under control (grouped) conditions. This study showed that conservation of the oocyte/embryo medium densities generally employed for grouped culture does not facilitate embryo development if oocytes/embryos are cultured individually. However, individual oocytes could effectively undergo IVM/IVF/IVC to the expanded blastocyst stage with some small modifications to the standard protocol. Individual IVF was effective if carried out in either 100 μl of medium in wells or in 50 μl droplets. Individual IVC, if carried out in 10 or 20 μl droplets of SOF with FCS added at either 0 or 24 hr, was effective in terms of blastocyst yields but 20 μl droplets did yield significantly fewer hatched blastocysts compared to grouped controls (P < 0.05). An entirely individual embryo production system was effective when it included individual IVM in 10 μl droplets of M199 + 10 ng/ml EGF resulting in day 8 blastocyst yields not significantly different from controls (38% vs. 35% respectively). The use of 10% FCS during individual IVM appeared, at least under our experimental conditions, to be detrimental to subsequent development. The uses of an individual system for embryo production are many and varied. The results of this study show clearly that a large proportion of bovine oocytes can develop to the blastocyst stage when matured, fertilized, and cultured individually. This opens the way for studies regarding the quality of specific oocytes in such a way as will greatly improve our understanding of the events of late folliculogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

15.
16.
The present study was designed to evaluate the viability, meiotic competence and subsequent development of porcine oocytes vitrified using the cryotop method at different stages of in vitro maturation (IVM). Cumulus–oocyte complexes (COCs) were cultured in IVM medium supplemented with 1 mM dibutyryl cAMP (dbcAMP) for 22 h and then for an additional 22 h without dbcAMP in the medium. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), anaphase I/telophase I (AI/TI) and metaphase II (MII) were found to occur predominantly at 0–22, 26, 32, 38 and 44 h of IVM, respectively. Oocytes were exposed to cryoprotectant (CPA) or vitrified after different durations of IVM (0, 22, 26, 32, 38 and 44 h). After CPA exposure and vitrification, surviving oocytes that were treated before completion of the 44 h maturation period were placed back into IVM medium for the remaining maturation period, and matured oocytes were incubated for 2 h. CPA treatment did not affect the viability of oocytes matured for 26, 32, 38 or 44 h, but significantly decreased survival rate of oocytes matured for 0 or 22 h. CPA treatment had no effect on the ability of surviving oocytes to develop to the MII stage regardless of the stage during IVM; however, blastocyst formation following PA was severely lower (P < 0.05) than that in the control. At 2 h post-warming, the survival rates of oocytes vitrified at 26, 32, 38 and 44 h of IVM were similar but were higher (P < 0.05) than those of oocytes vitrified at 0 or 22 h of IVM. The MII rates of surviving oocytes vitrified at 0 and 38 h of IVM did not differ from the control and were higher (P < 0.05) than those of oocytes vitrified at 22, 26 or 32 h of IVM. After parthenogenetic activation (PA), both cleavage and blastocyst rates of vitrified oocytes matured for 22, 26, 32, 38 and 44 h did not differ, but all were lower (P < 0.05) than those matured 0 h. In conclusion, our data indicate that survival, nuclear maturation and subsequent development of porcine oocytes may be affected by their stage of maturation at the time of vitrification; a higher percentage of blastocyst formation can be obtained from GV oocytes vitrified before the onset of maturation.  相似文献   

17.
The present study examined the effect of epidermal growth factor (EGF) during in vitro maturation (IVM) and embryo culture on blastocyst development in the pig. In experiment 1, cumulus oocyte complexes were cultured in North Carolina State University (NCSU) 23 medium containing porcine follicular fluid, cysteine, hormonal supplements, and with or without EGF (0–40 ng/ml) for 20–22 hr. They then were cultured for an additional 20–22 hr without hormones. After maturation, cumulus-free oocytes were co-incubated with frozen-thawed spermatozoa for 5–6 hr. Putative embryos were transferred to NCSU 23 containing 0.4% BSA and cultured for 144 hr. In experiment 2, oocytes were matured in medium containing 10 ng/ml EGF, inseminated, and putative embryos were cultured in the presence of 0–40 ng/ml EGF. In experiment 3, oocytes were cultured in the presence of 0, 10 and 40 ng/ml EGF to examine the kinetics of meiotic maturation. In experiment 4, 2- to 4-cell and 8-cell to morula stage embryos derived from oocytes matured with 10 ng/ml EGF were transferred to the oviduct and uterus, respectively, of each of three recipient gilts (3 and 4 days post-estrus, respectively). The presence or absence of EGF during IVM did not affect cumulus expansion, nuclear maturation, fertilization parameters, or cleavage rate. However, compared to no addition (21%), presence of 1 (33%) and 10 ng/ml EGF (42%) during IVM increased (P < 0.01) the rate of blastocyst development in a concentration-dependent manner. Compared to 10 ng/ml EGF, higher concentrations (20 and 40 ng/ml) reduced (P < 0.01) blastocyst development in a concentration-dependent manner (35% and 24%, respectively). No difference was observed between no addition and 40 ng/ml EGF (22%). Compared to no addition and 10 ng/ml EGF, a significantly (P < 0.001) higher proportion (25% vs. 55%) of oocytes reached metaphase II stage 33 hr after IVM with 40 ng/ml EGF. However, no difference was observed at 44 hr. Transfer of embryos to six recipient gilts resulted in three pregnancies and birth of 18 piglets. The results show that EGF at certain concentrations in IVM medium can influence the developmental competence of oocytes. However, addition of EGF during the culture of pig embryos derived from oocytes matured in the presence of EGF is without effect. Birth of piglets provides evidence that embryos derived from oocytes matured in a medium containing EGF are viable. Mol. Reprod. Dev. 51:395–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
A precise, accurate, nonambiguous and high-throughput method is required to assess nuclear maturation of mammalian oocytes. The objectives of this study were to compare the efficiency and ease of use of a simplified fluorescence imaging (anti-lamin A/C and 4′,6-diamidino-2-phenylindole [DAPI]) technique to the existing technique (aceto-orcein staining) for the evaluation of nuclear maturation of bovine oocytes, and to determine the kinetics of bovine oocyte maturation using an anti-lamin A/C-DAPI technique. In Experiment 1, oocytes were matured in vitro and stained with aceto-orcein and anti-lamin A/C-DAPI staining techniques. The proportions of oocytes lost during procedures and those that could not be classified (because of ambiguous morphology) during evaluation were lower (P < 0.0001) in oocytes stained with anti-lamin A/C-DAPI (9% and 2%) than those stained with aceto-orcein (31% and 13%), respectively. Anti-lamin A/C-DAPI was a quick procedure which could be completed within 7 h after completion of the maturation (compared with > 24 h for the aceto-orcein method). Furthermore, > 200 oocytes could be stained in one batch with anti-lamin A/C-DAPI technique. In Experiment 2, nuclear maturation kinetics of bovine oocytes at various time intervals (0, 6, 12, and 22 h) during in vitro maturation (IVM) was evaluated using the anti-lamin A/C-DAPI technique. Germinal vesicle, germinal vesicle breakdown, metaphase I, and metaphase II oocytes were predominant at 0, 6, 12, and 22 h of IVM, respectively. We concluded that the anti-lamin A/C-DAPI was an efficient and simple technique for nonambiguous evaluation of nuclear maturation status of large numbers of oocytes in a short interval.  相似文献   

19.
Several reports have suggested that a treatment before in vitro maturation might improve oocyte competence and increase its developmental potential. Therefore, the objectives of the present study were to establish the kinetics of IVM in Zebu oocytes, to assess the effect of 6-dimethylaminopurine (6-DMAP), a phosphorylation inhibitor, on meiotic resumption, and to verify the developmental potential of the blocked oocytes after removal of the inhibitory conditions. To establish the kinetics of in vitro maturation 1422 oocytes were obtained from Nellore cows ovaries and matured in presence and absence of gonadotropins. Samples of oocytes were taken from culture at 0, 6, 9, 12, 15, 18, 21 and 24h, and the oocytes were fixed, stained and evaluated for nuclear morphology. Germinal vesicle break down (GVBD) occurred between 6 and 12h of culture in both groups. By 21h the majority of the oocytes had reached metaphase II in presence (71%) and absence (62%) of gonadotropins. In order to examine the inhibitory effect of 6-DMAP, 585 oocytes were cultured for 12, 18 and 24h in the presence or absence of 2mM of 6-DMAP. At each time point the oocytes were evaluated for nuclear morphology. To test the reversibility of meiotic inhibition 366 oocytes were incubated for 0, 12, 18 and 24h in the presence of 6-DMAP and then were transferred to the maturation medium and cultured for further 24h. A total of 429 oocytes were used to evaluate the developmental potential after meiotic inhibition. The oocytes were cultured in the presence of 6-DMAP for 0, 12, 18 and 24h, and then were matured, fertilized and cultured in vitro. Culture of bovine oocytes in the presence of 6-DMAP up to 24h completely blocked GVBD with more than 90% of the oocytes at GV stage. The inhibitory effect of 6-DMAP was fully reversible since maturation rates were similar (P>0.05) among all treatment groups. The evaluation of embryo development after various periods of meiotic blockage showed that inhibition, regardless the time period, had no effect (P>0.05) on penetration and cleavage rates. However, the proportion of embryos at blastocyst stage was reduced after inhibition for 12 (20.2%), 18 (20.1%) and 24h (19.0%) compared with the control group (35.6%). 6-DMAP has a reversible effect on maintenance of meiotic arrest, but reduced further embryo development.  相似文献   

20.
The evaluation of culture medium for bovine oocytes has progressed toward more defined conditions during the last few years. The main objective of this study was to evaluate different sources of albumin as a protein supplement during in vitro maturation (IVM) of bovine oocytes in synthetic oviduct fluid medium (SOF). The replacement of protein with polyvinyl pyrrolidone (PVP) or polyvinyl alcohol (PVA) was also evaluated. The effect of recombinant human FSH on cumulus expansion and nuclear maturation in SOF containing BSA (BSA-V) or PVP-40 was also studied. Addition of BSA-V during IVM retarded nuclear maturation when compared with addition of PVP-40 or use of SOF alone. The inclusion of different concentrations of BSA-V, fetal calf serum (FCS), or PVA during IVM had no positive effect on the developmental capacity of the oocytes compared with the use of SOF alone with no supplement but significantly decreased the percentage of embryos reaching the morula and blastocyst stages. However, when BSA-V was replaced with purified BSA, BSA that was essentially free of fatty acids, or chicken egg albumin, embryonic development rates were restored. The presence of PVP-40 but not PVP-360 during IVM significantly increased morula and blastocyst production. These results indicate that although SOF alone can support bovine oocyte maturation, a high proportion of morulae and blastocysts can be produced from IVM oocytes cultured in medium containing PVP-40. These studies are the first to show that the effect of FSH on nuclear maturation and cumulus expansion is dependent on substrates present in IVM medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号