首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amplification of the type I receptor tyrosine kinase ErbB-2 (HER2/Neu) is observed in 20-30% of human mammary carcinomas, correlating with a poor clinical prognosis. We have previously demonstrated that four (Tyr(1144), Tyr(1201), Tyr(1226/1227), or Tyr(1253)) of the five known Neu/ErbB-2 autophosphorylation sites can independently mediate transforming signals. The transforming potential of at least two of these autophosphorylation sites (Tyr(1144) and Tyr(1226/1227)) has been further correlated with their ability to associate with Grb2 and Shc adapter proteins, respectively. To confirm the specificity of these interactions, we have created a series of second site mutants in these phosphorylation sites. The results showed that Grb2 recruitment to site 1144 is absolutely required for transforming signal from this autophosphorylation site, whereas association of Shc-mediated transformation is dependent on conservation of the NPXY motif spanning Tyr(1227). A stretch of amino acid identity around tyrosines 1201 (ENPEYLTP)and 1253 (ENPEYLDL) exists, and mutation of key residues within this motif reveals distinct requirements for an intact protein tyrosine-binding protein (NPXY). We show that DOK-R, a protein tyrosine-binding site-containing protein implicated in Ras signaling, interacts with Neu/ErbB-2 at Tyr(1253) as do two unidentified proteins, p150 and p34, the latter correlating with transformation. Together these data argue that ErbB-2/Neu is capable of mediating transformation through distinct effector pathways.  相似文献   

2.
A number of cytoplasmic signaling molecules are thought to mediate mitogenic signaling from the activated Neu receptor tyrosine kinase through binding specific phosphotyrosine residues located within the intracellular portion of Neu/c-ErbB-2. An activated neu oncogene containing tyrosine-to-phenylalanine substitutions at each of the known autophosphorylation sites was generated and assessed for its specific transforming potential in Rat1 and NIH 3T3 fibroblasts. Mutation of these sites resulted in a dramatic impairment of the transforming potential of neu. To assess the role of these tyrosine phosphorylation sites in cellular transformation, the transforming potential of a series of mutants in which individual tyrosine residues were restored to this transformation-debilitated neu mutant was evaluated. Reversion of any one of four mutated sites to tyrosine residues restored wild-type transforming activity. While each of these transforming mutants displayed Ras-dependent signaling, the transforming activity of two of these mutants was correlated with their ability to bind either the GRB2 or SHC adapter molecules that couple receptor tyrosine kinases to the Ras signaling pathway. By contrast, restoration of a tyrosine residue located at position 1028 completely suppressed the basal transforming activity of this mutated neu molecule or other transforming neu molecules which possessed single tyrosine residues. These data argue that the transforming potential of activated neu is mediated both by positive and negative regulatory tyrosine phosphorylation sites.  相似文献   

3.
4.
A rodent oncogenic mutant of the Neu receptor tyrosine kinase is a useful experimental model because overexpression of the respective receptor, namely HER2/ErbB-2, in human malignancies is associated with relatively aggressive diseases. Here we show that the oncogenic form of Neu is constitutively associated with the product of the c-cbl proto-oncogene and is part of a large complex that includes the phosphoinositide 3-kinase and Shc. Ectopic expression of c-Cbl, a ubiquitin-protein isopeptide ligase specific to activated tyrosine kinases, causes rapid removal of Neu from the cell surface and severely reduces signaling downstream of oncogenic Neu. c-Cbl-induced down-regulation of Neu involves covalent attachment of ubiquitin molecules and requires the carboxyl-terminal domain of Neu. The negative effect of c-Cbl is antagonized by v-Cbl, a virus-encoded oncogenic truncated form of c-Cbl. In an in vivo model, infection of a Neu-transformed neuroblastoma with a c-Cbl-encoding retrovirus caused enhanced down-regulation of Neu and correlated with tumor retardation. Our results implicate c-Cbl in negative regulation of Neu and offer a potential target for treatment of HER2/ErbB-2-positive human malignancies.  相似文献   

5.
Cooperation between the Neu/ErbB-2 and transforming growth factor beta (TGF-beta) signaling pathways enhances the invasive and metastatic capabilities of breast cancer cells; however, the underlying mechanisms mediating this synergy have yet to be fully explained. We demonstrate that TGF-beta induces the migration and invasion of mammary tumor explants expressing an activated Neu/ErbB-2 receptor, which requires signaling from autophosphorylation sites located in the C terminus. A systematic analysis of mammary tumor explants expressing Neu/ErbB-2 add-back receptors that couple to distinct signaling molecules has mapped the synergistic effect of TGF-beta-induced motility and invasion to signals emanating from tyrosine residues 1226/1227 and 1253 of Neu/ErbB-2. Given that the ShcA adaptor protein is known to interact with Neu/ErbB-2 through these residues, we investigated the importance of this signaling molecule in TGF-beta-induced cell motility and invasion. The reduction of ShcA expression rendered cells expressing activated Neu/ErbB-2, or add-back receptors signaling specifically through tyrosines 1226/1227 or 1253, unresponsive to TGF-beta-induced motility and invasion. In addition, a dominant-negative form of ShcA, lacking its three known tyrosine phosphorylation sites, completely abrogates the TGF-beta-induced migration and invasion of breast cancer cells expressing activated Neu/ErbB-2. Our results implicate signaling through the ShcA adaptor as a key component in the synergistic interaction between these pathways.  相似文献   

6.
H Waterman  I Alroy  S Strano  R Seger    Y Yarden 《The EMBO journal》1999,18(12):3348-3358
Signaling by the epidermal growth factor (EGF) family and the neuregulin group of ligands is mediated by four ErbB receptor tyrosine kinases, that form homo- and heterodimeric complexes. Paradoxically, the neuregulin receptor ErbB-3 is devoid of catalytic activity, but its heterodimerization with other ErbBs, particularly the ligand-less ErbB-2 oncoprotein of carcinomas, reconstitutes superior mitogenic and transforming activities. To understand the underlying mechanism we constructed a chimeric EGF-receptor (ErbB-1) whose autophosphorylation C-terminal domain was replaced by the corresponding portion of ErbB-3. Consistent with the possibility that this domain recruits a relatively potent signaling pathway(s), the mitogenic signals generated by the recombinant fusion protein were superior to those generated by ErbB-1 homodimers and comparable to the proliferative activity of ErbB-2/ErbB-3 heterodimers. Upon ligand binding, the chimeric receptor recruited an ErbB-3-specific repertoire of signaling proteins, including Shc and the phosphatidylinositol 3-kinase, but excluding the ErbB-1-specific substrate, phospholipase Cgamma1. Unlike ErbB-1, which is destined to lysosomal degradation through a mechanism that includes recruitment of c-Cbl and receptor poly-ubiquitination, the C-terminal tail of ErbB-3 shunted the chimeric protein to the ErbB-3-characteristic recycling pathway. These observations attribute the mitogenic superiority of ErbB-3 to its C-terminal tail and imply that the flanking kinase domain has lost catalytic activity in order to restrain the relatively potent signaling capability of the C-terminus.  相似文献   

7.
To investigate the functions of key domains of the epidermal growth factor receptor (EGFR), various EGFR-derived peptide sequences were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins. The purified fusion proteins (GST-TK0-8) were tested as substrates for the tyrosine kinase activities of the EGFR and c-src. Both the GST-TK4 fusion protein, which contains the major C-terminal tyrosine autophosphorylation sites of the EGFR, and GST-TK7, which contains the connecting sequence between the EGFR kinase domain and the C-terminal autophosphorylation domain, were strongly phosphorylated by the EGFR and c-src. Hence the candidate tyrosine phosphorylation sites present in the connecting sequences of the EGFR, as well as the known autophosphorylation sites of the EGFR, can be phosphorylated by the two tyrosine kinases. The protein GST-TK7 was phosphorylated by c-src with a KM of 5-10 microM, which indicated a potential interaction between the connecting segment of the EGFR and the c-src kinase. The GST fusion proteins were also used to map the sites recognized by two anti-EGFR monoclonal antibodies and a polyclonal serum raised against an EGFR tyrosine kinase domain fragment. The recognition site of one monoclonal antibody was determined to be in a short sequence surrounding tyr1068, a primary site of autophosphorylation in the C-terminal domain of the receptor. The anti-peptide polyclonal serum recognized only sequences in the GST-TK7 fusion protein, and hence binds to the connecting sequence between the kinase core and the C-terminal domain. These antibodies will therefore be useful reagents for studying the function of two key structural elements of the EGFR tyrosine kinase. The GST-TK fusion proteins should have many other applications in the study of EGFR catalysis and mitogenic signalling.  相似文献   

8.
The neu (c-erbB-2) proto-oncogene encodes a tyrosine kinase receptor that is overexpressed in 20 to 30% of human breast tumors. Herein, cyclin D1 protein levels were increased in mammary tumors induced by overexpression of wild-type Neu or activating mutants of Neu in transgenic mice and in MCF7 cells overexpressing transforming Neu. Analyses of 12 Neu mutants in MCF7 cells indicated important roles for specific C-terminal autophosphorylation sites and the extracellular domain in cyclin D1 promoter activation. Induction of cyclin D1 by NeuT involved Ras, Rac, Rho, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38, but not phosphatidylinositol 3-kinase. NeuT induction of the cyclin D1 promoter required the E2F and Sp1 DNA binding sites and was inhibited by dominant negative E2F-1 or DP-1. Neu-induced transformation was inhibited by a cyclin D1 antisense or dominant negative E2F-1 construct in Rat-1 cells. Growth of NeuT-transformed mammary adenocarcinoma cells in nude mice was blocked by the cyclin D1 antisense construct. These results demonstrate that E2F-1 mediates a Neu-signaling cascade to cyclin D1 and identify cyclin D1 as a critical downstream target of neu-induced transformation.  相似文献   

9.
The overexpression of members of the ErbB tyrosine kinase receptor family has been associated with cancer progression. We demonstrate that focal adhesion kinase (FAK) is essential for oncogenic transformation and cell invasion that is induced by ErbB-2 and -3 receptor signaling. ErbB-2/3 overexpression in FAK-deficient cells fails to promote cell transformation and rescue chemotaxis deficiency. Restoration of FAK rescues both oncogenic transformation and invasion that is induced by ErbB-2/3 in vitro and in vivo. In contrast, the inhibition of FAK in FAK-proficient invasive cancer cells prevented cell invasion and metastasis formation. The activation of ErbB-2/3 regulates FAK phosphorylation at Tyr-397, -861, and -925. ErbB-induced oncogenic transformation correlates with the ability of FAK to restore ErbB-2/3-induced mitogen-activated protein kinase (MAPK) activation; the inhibition of MAPK prevented oncogenic transformation. In contrast, the inhibition of Src but not MAPK prevented ErbB-FAK-induced chemotaxis. In migratory cells, activated ErbB-2/3 receptors colocalize with activated FAK at cell protrusions. This colocalization requires intact FAK. In summary, distinct FAK signaling has an essential function in ErbB-induced oncogenesis and invasiveness.  相似文献   

10.
11.
The mutant c-erbB-2 protein with Glu instead of Val-659 exhibited transforming activity in NIH 3T3 cells. This protein showed enhanced tyrosine kinase activity in vitro and enhanced autophosphorylation at Tyr-1248 located proximal to the carboxyl terminus. Enhanced tyrosine phosphorylation of several cellular proteins was detected in cells expressing the Glu-659 c-erbB-2 protein. Introduction of an additional mutation at the ATP-binding site (Lys-753 to Met) of this protein resulted in abolition of its transforming ability. These data indicate that the transforming potential of c-erbB-2 is closely correlated with elevated tyrosine kinase activity of the gene product. To investigate the role of autophosphorylation in cell transformation, we introduced an additional mutation at the autophosphorylation site of the Glu-659 c-erbB-2 protein (Tyr-1248 to Phe). This mutant protein exhibited lower tyrosine kinase activity and lower transforming activity. On the other hand, when the carboxyl-terminal 230 amino acid residues were deleted from the c-erbB-2 protein, the tyrosine kinase activity and cell-transforming activity of the protein were enhanced. Thus, the carboxyl-terminal domain, which contains the major autophosphorylation site, Tyr-1248, may regulate cellular transformation negatively and autophosphorylation may eliminate this negative regulation.  相似文献   

12.
Bivalence of EGF-like ligands drives the ErbB signaling network.   总被引:12,自引:3,他引:9  
Signaling by epidermal growth factor (EGF)-like ligands is mediated by an interactive network of four ErbB receptor tyrosine kinases, whose mechanism of ligand-induced dimerization is unknown. We contrasted two existing models: a conformation-driven activation of a receptor-intrinsic dimerization site and a ligand bivalence model. Analysis of a Neu differentiation factor (NDF)-induced heterodimer between ErbB-3 and ErbB-2 favors a bivalence model; the ligand simultaneously binds both ErbB-3 and ErbB-2, but, due to low-affinity of the second binding event, ligand bivalence drives dimerization only when the receptors are membrane anchored. Results obtained with a chimera and isoforms of NDF/neuregulin predict that each terminus of the ligand molecule contains a distinct binding site. The C-terminal low-affinity site has broad specificity, but it prefers interaction with ErbB-2, an oncogenic protein acting as a promiscuous low-affinity subunit of the three primary receptors. Thus, ligand bivalence enables signal diversification through selective recruitment of homo- and heterodimers of ErbB receptors, and it may explain oncogenicity of erbB-2/HER2.  相似文献   

13.
Melanoma formation in Xiphoporus is initiated by overexpression of the EGFR-related receptor tyrosine kinase Xmrk (Xiphoporus melanoma receptor kinase). This receptor is activated in fish melanoma as well as in a melanoma-derived cell line (PSM) resulting in constitutive Xmrk-mediated mitogenic signaling. In order to define the underlying signaling pathway(s), triggered by the activated Xmrk receptor, we attempted to identify its physiological substrates. Examination of the Xmrk carboxyterminus for putative tyrosine autophosphorylation sites revealed the presence of potential binding motifs for GRB2 as well as for Shc. Binding of these adaptor proteins to the Xmrk receptor was detected in vitro and in cells expressing the mrk kinase. The GRB2 and Shc interactions with the receptor could be disrupted individually by phosphotyrosine peptides containing putative Xmrk autophosphorylation sites, indicating direct binding of both proteins. Recruitment of GRB2 by the constitutively activated Xmrk receptor led to strong MAP kinase activation in Xiphoporus melanoma cells. We also identified a high-affinity binding site for src-kinases (pYEDL) in the Xmrk carboxyterminus. Competition experiments with phosphopeptides comprising this site confirmed that it is used for high-affinity binding of Xiphoporus fyn (Xfyn) to Xmrk in melanoma cells. Thus, Xmrk can initiate different signaling pathways by using multiple substrate-binding sites to trigger proliferation of pigment cells.  相似文献   

14.
Phosphorylation of the major autophosphorylation site (Tyr-1073) within Fujinami sarcoma virus P130gag-fps activates both the intrinsic protein-tyrosine kinase activity and transforming potential of the protein. In this report, a second site of autophosphorylation Tyr-836 was identified. This tyrosine residue is found within a noncatalytic domain (SH2) of P130gag-fps that is required for full protein-kinase activity in both rat and chicken cells. Autophosphorylation of this tyrosine residue implies that the SH2 region lies near the active site in the catalytic domain in the native protein and thus possibly regulates its enzymatic activity. Four mutations have occurred within the SH2 domain between the c-fps and v-fps proteins. Tyr-836 is one of these changes, being a Cys in c-fps. Site-directed mutagenesis was used to investigate the function of this autophosphorylation site. Substitution of Tyr-836 with a Phe had no apparent effect on the transforming ability or protein-tyrosine kinase activity of P130gag-fps in rat-2 cells. Mutagenesis of both autophosphorylation sites (Tyr-1073 and Tyr-836) did not reveal any cooperation between these two phosphorylation sites. The implications of the changes within the SH2 region for v-fps function and activation of the c-fps oncogenic potential are discussed.  相似文献   

15.
A region of the primary amino acid sequence of the epidermal growth factor receptor (EGF) protein-tyrosine kinase, which is involved in ATP binding, was identified using chemical modification and immunological techniques. EGF receptor was 14C-labelled with the ATP analogue 5'-p-fluorosulphonylbenzoyladenosine and from a tryptic digest a single radiolabelled peptide was isolated. The amino acid sequence was determined to be residues 716-724 and hence lysine residue 721 is located within the ATP-binding site. Antisera were elicited in rabbits to a synthetic peptide identical to residues 716-727 of the EGF receptor and the homologous sequence in v-erb B transforming protein from avian erythroblastosis virus. The affinity-purified antibodies precipitated human ECF receptor from A431 cells and placenta, and the v-erb B protein from erythroblasts. The antibodies inhibited EGF-stimulated receptor protein-tyrosine kinase autophosphorylation and phosphorylation of an exogenous peptide substrate containing tyrosine. The antibodies did not immunoprecipitate the transforming proteins pp60v-src or P120gag-abl or cAMP-dependent protein kinase, proteins which have homologous but not identical sequences surrounding the lysine residue within the ATP-binding site, nor did they react with the platelet-derived growth factor receptor. The antibodies had no effect on the kinase activity of purified v-abl protein in solution. The antibodies may therefore be a specific inhibitor of the tyrosine kinase of the EGF receptor.  相似文献   

16.
17.
We have used the neurokinin NK-2 receptor as a model to examine how receptor desensitization affects cellular responses. The liganded receptor transiently activates phospholipase C (PLC) and is rapidly phosphorylated on Ser/Thr residues in its C-terminal domain. Mutant receptors lacking this domain mediate persistent activation of PLC. We now show that, in transfected Rat-1 cells, mutant receptor mediates ligand-induced DNA synthesis, morphological transformation and growth in soft agar, whereas wild-type (wt) receptor does not. Wt receptor causes only transient MAP kinase activation. In contrast, MAP kinase activation by mutant receptor is sustained for >4 h. Neither wt nor mutant receptor couples to Ras activation. Downregulation of protein kinase C (PKC) has little effect on MAP kinase activation, DNA synthesis and transformation. Mutant receptors also promote stronger protein tyrosine phosphorylation and stress fibre formation than does wt receptor. Thus, C-terminal truncation allows the NK-2 receptor to signal sustained MAP kinase activation, cell growth and transformation by a Ras- and PKC-independent mechanism. Our results reveal the importance of the C-terminal ''desensitization domain'' in suppressing the oncogenic potential of a prototypic PLC-coupled receptor.  相似文献   

18.
The neu protooncogene encodes a receptor tyrosine kinase homologous to the receptor for the epidermal growth factor. The oncogenic potential of neu is released upon chemical carcinogenesis, which replaces a glutamic acid for a valine residue, within the single transmembrane domain. This results in constitutive receptor dimerization and activation of the intrinsic catalytic function. To study the implications of the oncogenic mutation and the consequent receptor dimerization on the interaction with the yet incompletely characterized ligand of p185neu, we constructed chimeric proteins between the ligand binding domain of the epidermal growth factor receptor and the transmembrane and cytoplasmic domains of the normal or the transforming Neu proteins. The chimeric receptors displayed cellular and biochemical differences characteristic of the normal and the transforming Neu proteins and therefore may reliably represent the ligand binding functions of the two receptor forms. Analyses of ligand binding revealed qualitative and quantitative differences that were a result of the single mutation; whereas the normal chimera (valine version) displayed two populations of binding sites with approximately 90% of the receptors in the low affinity state, the transforming receptor (glutamic acid version) showed a single population of binding sites with relatively high affinity. Kinetics measurements indicated that the difference in affinities was because of slower rates of both ligand association and ligand dissociation from the constitutively dimerized mutant receptor. It therefore appears that the oncogenic mutation, by permanently dimerizing the receptor, establishes a high affinity ligand binding state which is functionally equivalent to the ligand-occupied normal receptor. Our conclusion is further supported by the rates of endocytosis of the wild-type and the mutant receptor. Hence, these results provide the first experimental evidence from living cells which supports a model that attributes the heterogeneity of ligand binding sites to the state of oligomerization of receptor tyrosine kinases.  相似文献   

19.
Sharpe S  Barber KR  Grant CW 《Biochemistry》2002,41(7):2341-2352
The transmembrane domains of receptor tyrosine kinases are single-span helical structures suggested to participate directly in the formation of side-to-side receptor homodimers/homooligomers that modulate signal transduction. Transmembrane peptides from the class I receptor tyrosine kinase, ErbB-2, were examined directly by 2H NMR spectroscopy as a means of following such phenomena under the dynamic conditions that characterize fluid, fully hydrated bilayers of natural phospholipids. Appropriate peptides were expressed as 50-mers, containing the transmembrane domain of ErbB-2 plus contiguous stretches of amino acids from the cytoplasmic and extracellular domains. Deuterium probes were incorporated in place of 1H at a site within the helical intramembranous portion (the -CH3 side chain of Ala657), and the peptides were assembled into bilayers of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) for study. An analogous peptide corresponding to the oncogenic variant characterized by a Val659-->Glu point mutation was also examined. At high peptide concentration, prominent spectral features could be assigned to rapidly rotating transmembrane monomers and to large oligomers rotating very slowly relative to a time scale of 10(-5) s. As peptide concentration was lowered, the latter feature was greatly reduced, and an additional population of mobile species became identifiable, consistent with the presence of homodimers and/or small oligomers. The defined nature of these latter spectral features suggests that preferred interaction sites exist on the peptides. The appearance of similar phenomena in the case of transmembrane peptides from both wild-type ErbB-2 and the transforming mutant argues for the involvement of additional factors in signal modulation, such as limitations normally imposed by the missing extramembranous portions.  相似文献   

20.
The role of autophosphorylation in modulation of erbB-2 transforming function   总被引:11,自引:0,他引:11  
The product of the erbB-2 gene is a 185-kD receptor-like glycoprotein. erbB-2 gp185 displays constitutive tyrosine kinase activity and transforms NIH 3T3 cells when expressed 100-fold over the normal levels. We have analyzed the role of tyrosine kinase function and of receptor autophosphorylation in the regulation of erbB-2 biological activity. Abolition of erbB-2 gp185 tyrosine kinase function resulted in complete loss of its transforming activity and the absence of in vivo tyrosine phosphorylation. The steady-state content of phosphotyrosine in erbB-2 gp185 was found to be solely dependent on receptor autophosphorylation and to be dependent on the specific enzymatic activity of the erbB-2 protein. The major sites of erbB-2 autophosphorylation were shown to be in its COOH-terminal domain. Biological analysis of erbB-2 mutants containing either individual or multiple Tyr----Phe substitutions at the potential sites of autophosphorylation revealed that autophosphorylation upregulates erbB-2 gp185 transforming activity. Autophosphorylation did not modulate receptor turnover. A Tyr----Phe substitution of erbB-2 Tyr-877 homologous to pp60c-src Tyr-416 did not alter erbB-2 biological and biochemical properties, thus excluding the possibility that phosphorylation of this residue, located in the kinase domain, modulates erbB-2 gp185 catalytic function. Hence, autophosphorylation of tyrosine residues localized in its COOH terminus appears to be required for optimal coupling of erbB-2 gp185 with its mitogenic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号