共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Crystal structure of the Msx-1 homeodomain/DNA complex 总被引:3,自引:0,他引:3
The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes. 相似文献
6.
Structure of the even-skipped homeodomain complexed to AT-rich DNA: new perspectives on homeodomain specificity. 总被引:5,自引:4,他引:5 下载免费PDF全文
even-skipped is a homeobox gene important in controlling segment patterning in the embryonic fruit fly. Its homeobox encodes a DNA binding domain which binds with similar affinities to two DNA consensus sequences, one AT-rich, the other GC-rich. We describe a crystallographic analysis of the Even-skipped homeodomain complexed to an AT-rich oligonucleotide at 2.0 A resolution. The structure reveals a novel arrangement of two homeodomains bound to one 10 bp DNA sequence in a tandem fashion. This arrangement suggests a mechanism for the homeoproteins' regulatory specificity. In addition, the functionally important residue Gln50 is observed in multiple conformations making direct and water-mediated hydrogen bonds with the DNA bases. 相似文献
7.
8.
The central problem faced by DNA binding proteins is how to select the correct DNA sequence from the sea of nonspecific sequences in a cell. The problem is particularly acute for bacterial restriction enzymes because cleavage at an incorrect DNA site could be lethal. To understand the basis of this selectivity, we report here the crystal structure of endonuclease BamHI bound to noncognate DNA. We show that, despite only a single base pair change in the recognition sequence, the enzyme adopts an open configuration that is on the pathway between free and specifically bound forms of the enzyme. Surprisingly, the DNA drops out of the binding cleft with a total loss of base-specific and backbone contacts. Taken together, the structure provides a remarkable snapshot of an enzyme poised for linear diffusion (rather than cleavage) along the DNA. 相似文献
9.
Polyamides composed of N-methylpyrrole (Py), N-methylimidazole (Im) and N-methylhydroxypyrrole (Hp) amino acids linked by beta-alanine (beta) bind the minor groove of DNA in 1:1 and 2:1 ligand to DNA stoichiometries. Although the energetics and structure of the 2:1 complex has been explored extensively, there is remarkably less understood about 1:1 recognition beyond the initial studies on netropsin and distamycin. We present here the 1:1 solution structure of ImPy-beta-Im-beta-ImPy-beta-Dp bound in a single orientation to its match site within the DNA duplex 5'-CCAAAGAGAAGCG-3'.5'-CGCTTCTCTTTGG-3' (match site in bold), as determined by 2D (1)H NMR methods. The representative ensemble of 12 conformers has no distance constraint violations greater than 0.13 A and a pairwise RMSD over the binding site of 0.80 A. Intermolecular NOEs place the polyamide deep inside the minor groove, and oriented N-C with the 3'-5' direction of the purine-rich strand. Analysis of the high-resolution structure reveals the ligand bound 1:1 completely within the minor groove for a full turn of the DNA helix. The DNA is B-form (average rise=3.3 A, twist=38 degrees ) with a narrow minor groove closing down to 3.0-4.5 A in the binding site. The ligand and DNA are aligned in register, with each polyamide NH group forming bifurcated hydrogen bonds of similar length to purine N3 and pyrimidine O2 atoms on the floor of the minor groove. Each imidazole group is hydrogen bonded via its N3 atom to its proximal guanine's exocyclic amino group. The important roles of beta-alanine and imidazole for 1:1 binding are discussed. 相似文献
10.
Agez M Chen J Guerois R van Heijenoort C Thuret JY Mann C Ochsenbein F 《Structure (London, England : 1993)》2007,15(2):191-199
Asf1 is a histone chaperone that favors histone H3/H4 assembly and disassembly. We solved the structure of the conserved domain of human ASF1A in complex with the C-terminal helix of histone H3 using nuclear magnetic resonance spectroscopy. This structure is fully compatible with an association of ASF1 with the heterodimeric form of histones H3/H4. In our model, ASF1 substitutes for the second H3/H4 heterodimer that is normally found in heterotetrameric H3/H4 complexes. This result constitutes an essential step in the fundamental understanding of the mechanisms of nucleosome assembly by histone chaperones. Point mutations that perturb the Asf1/histone interface were designed from the structure. The decreased binding affinity of the Asf1-H3/H4 complex correlates with decreased levels of H3-K56 acetylation and phenotypic defects in vivo. 相似文献
11.
12.
13.
14.
15.
L D Williams M Egli G Ughetto G A van der Marel J H van Boom G J Quigley A H Wang A Rich C A Frederick 《Journal of molecular biology》1990,215(2):313-320
The anthracyclines form an important family of cancer chemotherapeutic agents with a strong dependence of clinical properties on minor differences in chemical structure. We describe the X-ray crystallographic solution of the three-dimensional structure of the anthracycline 11-deoxydaunomycin plus d(CGTsACG). In this complex, two drug molecules bind to each hexamer duplex. Both the drug and the DNA are covalently modified in this complex in contrast with the three previously reported DNA-anthracycline complexes. In the 11-deoxydaunomycin complex the 11 hydroxyl group is absent and a phosphate oxygen at the TpA step has been replaced by a sulfur atom leading to a phosphorothioate with absolute stereochemistry R. Surprisingly, removal of a hydroxyl group from the 11 position does not alter the relative orientation of the intercalated chromophore. However, it appears that the phosphorothioate modification influenced the crystallization and caused the 11-deoxydaunomycin-d(CGTsACG) complex to crystallize into a different lattice (space group P2) with different lattice contacts and packing forces than the non-phosphorothioated DNA-anthracycline complexes (space group P4(1)2(1)2). In the minor groove of the DNA, the unexpected position of the amino-sugar of 11-deoxydaunomycin supports the hypothesis that in solution the position of the amino sugar is dynamic. 相似文献
16.
Huong Ngyen Marit Orlamuender David Pretzel Inge Agricola Ulrich Sternberg Siegmund Reissmann 《Journal of peptide science》2008,14(9):1010-1021
To contribute to a better understanding of metalloenzymes, we studied ion selectivity, complex formation tendencies and catalytic activities of linear and cyclic pseudopeptides. In this contribution, a linear and cyclic pseudo hexapeptide is described. The complex with transition metal ions and the sequence were designed using the programme COSMOS. Different routes of solid‐phase synthesis were performed and compared using anchoring by C‐terminus or a His side chain, using preformed pseudodipeptide building units or formation of N‐functionalized peptide bond during stepwise assembly. The different strategies were compared regarding cyclization tendency, yield and purity. Side‐chain anchoring to solid support favours the cyclization but leads to the formation of difficult to separate dioxopiperazine. Both routes require preformed building units. Complex‐formation tendencies and selectivity for certain bivalent transition metal ions were experimentally estimated and compared to ones predicted theoretically. CD measurements indicate conformational changes by complex formation with different metal ions. Catalytic activities on oxidation of catechol and hydrolysis of bis‐phosphate esters by some metal complexes of linear and cyclic peptide show only low catalytic activities compared to other model peptides and related metalloenzymes. The preference of the cyclic peptide for complexation of Ni2+ corresponds well to the predictions of COSMOS‐NMR force field calculations. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
17.
Christoph Wiedemann Anna Szambowska Sabine H?fner Oliver Ohlenschl?ger Karl-Heinz Gührs Matthias G?rlach 《Nucleic acids research》2015,43(5):2958-2967
The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ‘wings’ of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain. 相似文献
18.
Unexpected features and mechanism of heterodimer formation of a herpesvirus nuclear egress complex 下载免费PDF全文
Ming F Lye Mayuri Sharma Kamel El Omari David J Filman Jonathan P Schuermann James M Hogle Donald M Coen 《The EMBO journal》2015,34(23):2937-2952
Herpesvirus nucleocapsids escape from the nucleus in a process orchestrated by a highly conserved, viral nuclear egress complex. In human cytomegalovirus, the complex consists of two proteins, UL50 and UL53. We solved structures of versions of UL53 and the complex by X‐ray crystallography. The UL53 structures, determined at 1.93 and 3.0 Å resolution, contained unexpected features including a Bergerat fold resembling that found in certain nucleotide‐binding proteins, and a Cys3His zinc finger. Substitutions of zinc‐coordinating residues decreased UL50–UL53 co‐localization in transfected cells, and, when incorporated into the HCMV genome, ablated viral replication. The structure of the complex, determined at 2.47 Å resolution, revealed a mechanism of heterodimerization in which UL50 clamps onto helices of UL53 like a vise. Substitutions of particular residues on the interaction interface disrupted UL50–UL53 co‐localization in transfected cells and abolished virus production. The structures and the identification of contacts can be harnessed toward the rational design of novel and highly specific antiviral drugs and will aid in the detailed understanding of nuclear egress. 相似文献
19.