首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human hepatocyte growth factor (hHGF) consists of characteristic structural domains. In this study, we prepared mutant proteins lacking each of these domains and examined their biological activities for stimulation of hepatocyte DNA synthesis, inhibition of Meth A cell growth, and induction of MDCK cell dissociation. We also examined their interactions with the c-met/HGF receptor by competition analysis and by analysis of levels of tyrosine phosphorylation. The mutant proteins lacking the N-terminal, the first kringle, or the second kringle domain were not biologically effective and could not compete with hHGF bound to the c-met/HGF receptor. The results indicate that these domains are necessary for the biological activities of hHGF mediated by binding to the c-met/HGF receptor. The mutant proteins lacking the third or fourth kringle domain moderately retained biological activities and the receptor binding. The relative levels of the tyrosine phosphorylation of the c-met/HGF receptor by these mutant proteins correlated well with the relative potencies of the biological activities when compared with that of the wild-type hHGF. The mutant protein lacking the light chain was not effective in the biological activities and tyrosine phosphorylation of the c-met/HGF receptor, but competed with hHGF bound to the c-met/HGF receptor. These results suggest that the heavy chain plays an important role in the interaction of hHGF with the c-met/HGF receptor and that the light chain is further required for the tyrosine phosphorylation of the c-met/HGF receptor.  相似文献   

2.
Hepatocyte growth factor (HGF) elicits pleiotropic cellular responses by binding to c-met, a PTK transmembrane receptor. The recent identification of HGF in fluids which enter the gut lumen suggests a mechanism by which c-met molecules are accessible to ligand that is present near the apical surfaces of polarized enterocytes. A subset of c-met molecules was detected, by confocal and immunoelectron microscopic analysis, which colocalizes with a recently identified src-related gastrointestinal tyrosine kinase (gtk) in the brush border membranes of enterocytes. Furthermore, treatment of c-met/gtk-transfected cells with a chemical cross-linking agent revealed that c-met forms a physical complex with gtk, in vivo. Not surprisingly, activation of the receptor molecules with HGF rapidly stimulated gtk enzymatic activity. Similarly, the stimulation of gtk activity occurred when nontransfected primary hepatocytes were exposed to ligand. These findings suggest a model in which HGF binding to luminally accessible c-met stimulates gtk activity. This brush border-associated c-met-linked pathway may be associated with a defined set of epithelial cell responses.  相似文献   

3.
We analyzed the high affinity receptor for IFN-gamma of Raji cells and human placenta by combining Scatchard analysis, cross-linking experiments, and receptor purification. Only one high affinity binding site was found, Kd 2.1 X 10(-10). The receptor is a 90-kDa glycoprotein. However, multiple cross-linked products of 110 kDa to about 250 kDa could be generated and proteins of 90, 70, and 50 kDa could be obtained upon purification. These proteins all contained the same 90-kDa receptor, or part of it. We suggest that extensive cross-linking and/or proteolysis may explain many of the conflicting results published thus far. The extracellular domain of the 90-kDa receptor protein was highly resistant to digestion with trypsin or proteinase K. Trypsin digestion neither affected the number of binding sites per cell, nor the Kd for IFN-gamma. A cluster of sites for different proteases was found in the intracellular domain. The 50-kDa fragment created by trypsin digestion had the same characteristics as the isolated 50-kDa receptor fragment. It contained the IFN-gamma binding site and the receptor's extracellular and amino-terminal domain. N-linked glycosylation contributed about 15 kDa to its molecular mass, of which 4 kDa were attributable to sialic acid residues. O-Linked glycosylation was not detected. The number of binding sites per cell and the Kd for IFN-gamma were not affected by the presence or absence of N-linked glycosylation. The receptor contained at least one critical disulfide bridge and the reduced receptor could be reactivated in vitro.  相似文献   

4.
We have examined the hepatocyte growth factor (HGF)-mediated changes in protein-tyrosine phosphorylation in mouse keratinocytes (PAM-212) and canine kidney epithelial cells (MDCK). In PAM-212 cells HGF and epidermal growth factor, both of which stimulated the DNA synthesis, rapidly induced the tyrosine phosphorylation of two 41-kDa and two 43-kDa proteins: increased tyrosine phosphorylation of those proteins has been commonly observed when quiescent fibroblasts are stimulated with a variety of mitogenic agents. In contrast, HGF did not stimulate the DNA synthesis but induced cell dissociation in MDCK cells; under this condition, increased tyrosine phosphorylation of the 41-kDa and 43-kDa protein was not observed. A possible role of the increased tyrosine phosphorylation of 41-kDa and 43-kDa protein in the signaling pathway of HGF is discussed.  相似文献   

5.
Bovine brain-derived growth factor (BDGF) is very similar to endothelial cell growth factor and brain-derived acidic fibroblast growth factor in terms of pI (5.7) and molecular weight (approximately 17,000). BDGF has a wide spectrum of cell specificity, including bovine aorta endothelial cells and Swiss mouse 3T3 cells. BDGF stimulates the phosphorylation of a 135-kDa protein in plasma membranes of 3T3 cells. The optimal concentration for stimulation of phosphorylation is close to the Kd of 125I-BDGF binding to receptor, suggesting that the BDGF-stimulated 32P-labeled 135-kDa protein may be the BDGF receptor. The alkaline stability of this 32P-labeled 135-kDa phosphoprotein and phosphoamino acid analysis of the acid hydrolysates indicate that the phosphorylation occurs at tyrosine residues. The molecular size of BDGF receptor is estimated as approximately 135 kDa by cross-linking 125I-BDGF to its receptor in 3T3 cells, using a bifunctional reagent, ethylene glycolbis(succinimidylsuccinate). Both BDGF-stimulated phosphorylation and 125I-BDGF binding to receptor can be inhibited by protamine. These results suggest that the BDGF receptor is a 135-kDa protein which is associated with a protein tyrosine kinase activity.  相似文献   

6.
Viral infection of host cells primarily depends on binding of the virus to a specific cell surface protein. In order to characterize the binding protein for group B coxsackieviruses (CVB), detergent-solubilized membrane proteins of different cell lines were tested in virus overlay protein-binding assays. A prominent virus-binding protein with a molecular mass of 100 kDa was detected in various CVB-permissive human and monkey cell lines but was not detected in nonpermissive cell lines. The specificity of CVB binding to the 100-kDa protein on permissive human cells was substantiated by binding of all six serotypes of CVB and by competition experiments. In contrast, poliovirus and Sendai virus did not bind to the 100-kDa CVB-specific protein. A fraction of HeLa membrane proteins enriched in the range of 100 kDa showed functional activity by transforming infectious CVB (160S) into A-particles (135S). In order to purify this CVB-binding protein, solubilized membrane proteins from HeLa cells were separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by elution of the 100-kDa protein. Amino acid sequence analysis of tryptic fragments of the CVB-binding protein indicated that this 100-kDa CVB-specific protein is a cell surface protein related to nucleolin. These results were confirmed by immunoprecipitations of the CVB-binding protein with nucleolin-specific antibodies, suggesting that a nucleolin-related membrane protein acts as a specific binding protein for the six serotypes of CVB.  相似文献   

7.
Calmodulin, a highly conserved protein family that has long been well known as an intracellular calcium sensor, was identified in the culture medium and cell walls of Arabidopsis thaliana suspension-cultured cells by immunoblotting assay. A promotion effect by applying exogenous purified calmodulin and an inhibition effect by the addition of anti-calmodulin anti-serum or calmodulin antagonist to the medium on proliferation of suspension cells were found by monitoring incorporation of [methyl-3H]thymidine into nuclear DNA. Radioligand binding analysis with 35S-labeled calmodulin indicated the presence of specific, reversible, and saturable calmodulin binding sites on the surface of both A. thaliana suspension-cultured cells and its protoplasts; among them at least one is on the surface of Arabidopsis protoplasts, with the Kd approximately 9.2 nM, and two are on the out-surface of Arabidopsis suspension-cultured cells, with Kd values of approximately 47.5 and 830 nM. Chemical crosslinking of 35S-labeled calmodulin to protoplasts revealed 117- and 41-kDa plasma membrane proteins specifically bound to calmodulin, whereas cross-linking with intact suspension-cultured cells verified more calmodulin binding proteins which might be cell wall-associated in addition to membrane-localized. Taking together, our data provide first evidence for the presence of apoplastic calmodulin receptor-like binding proteins on the cell surface of Arabidopsis suspension-cultured cells, which strongly supports our previous idea that apoplastic calmodulin functions as a peptide signal involved in regulation of cell growth and development.  相似文献   

8.
Nuclear GTP-binding proteins of Swiss 3T3 cells   总被引:1,自引:0,他引:1  
The GTP-binding proteins of Swiss 3T3 cell nuclei were analyzed by filter binding assay and UV cross-linking analysis. The results showed the presence of multiple GTP-binding proteins in the nuclei. Scatchard analysis revealed that the Kd value for GTP binding to high-affinity components was 69 nM, that to low-affinity components being 2.7 microM. The GTP-binding activities of some nuclear proteins were found to change significantly in response to the growth conditions of the cells. During culture of cells in medium without serum, the GTP-binding activity of a 140 kDa protein clearly decreased, whereas that of a 40 kDa protein increased.  相似文献   

9.
The interleukin 4 (IL-4) receptor was purified from the gibbon T cell line MLA 144. These cells were found to express high numbers of human IL-4-binding proteins (5000-6000 sites/cell) with an affinity constant (Kd) similar to that measured in human cell lines (Kd = 40-70 pM). Affinity cross-linking of 125I-IL-4 to human cell lines and MLA 144 cells demonstrated the labeling of three proteins of approximately 130, 75, and 65 kDa. Human IL-4-binding sites were solubilized from MLA 144 cells using Triton X-100 and then purified by carboxymethyl chromatography, which removed 50% of the protein without loss of IL-4-binding activity. Then sequential affinity purification over wheat germ agglutinin and a single IL-4 Affi-Gel 10 column resulted in a final 8000-fold purification of the IL-4 receptor. When analyzed on a silver-stained sodium dodecyl sulfate-polyacrylamide gel, the purified receptor migrated as a single molecular species of 130 +/- 5 kDa. Identification of the 130-kDa protein as the IL-4 receptor was demonstrated by cross-linking experiments and specific binding of 125I-IL-4 to nitrocellulose membranes after electrophoretic transfer of the purified receptor on sodium dodecyl sulfate-polyacrylamide gel.  相似文献   

10.
Previous work has shown that a mammary-derived growth factor (MDGF1), a human milk-derived, acidic, 62-kDa, N-glycosylated growth factor binds to cell surface receptors and stimulates proliferation of mammary epithelial cells. An 18-amino acid N-terminal partial sequence of the factor did not show any homology to other known growth factors or proteins. Using polyclonal antiserum raised against the synthetic peptide, we demonstrated that conditioned medium prepared from human breast cancer cell lines contains the factor. The antibody could adsorb the biological activity of the factor present in the conditioned medium. Earlier experiments on receptor cross-linking indicated that the receptor was approximately 120-140 kDa. Since tyrosine phosphorylation plays a crucial role in cell proliferation and cell transformation, experiments were conducted to find out whether MDGF1 induces the appearance of phosphotyrosine in MDGF1-receptor-positive MDA-MB 468, MCF-7, and 184A1N4 cell lines compared to receptor-negative lines. Western blot analysis using monoclonal antiphosphotyrosine indicated that MDGF1 induces phosphotyrosine in a 180-185-kDa protein in MDGF1 receptor-positive cell lines. Phosphorylation was not blocked and phosphorylated proteins were not immunoprecipitated by an antibody directed against the binding site of the EGF receptor. Cell membrane fractionation demonstrated that phosphorylation induced by MDGF1 was membrane-associated. The nature of this 180-185-kDa protein and its possible relationship to the MDGF1 receptor are under investigation.  相似文献   

11.
Hepatocyte growth factor (HGF) is a pleiotropic factor that plays an important role in complex biological processes such as embryogenesis, tissue regeneration, cancerogenesis, and angiogenesis. HGF promotes cell proliferation, survival, motility, and morphogenesis through binding to its receptor, a transmembrane tyrosine kinase encoded by the MET proto-oncogene (c-met). Structurally speaking, HGF is a polypeptide related to the enzymes of the blood coagulation cascade. Thus, it comprises kringle domains that in some other proteins have been shown to be responsible for the anti-angiogenic activity. To check whether the isolated kringles of HGF were able to inhibit angiogenesis, we produced them as recombinant proteins and compared their biological activity with that of the recombinant HGF N-terminal domain (N). We showed that (i) none of the isolated HGF kringle exhibits an anti-angiogenic activity; (ii) N is a new anti-angiogenic polypeptide; (iii) the inhibitory action of N is not specific toward HGF, because it antagonized the angiogenic activity of other growth factors, such as fibroblast growth factor-2 and vascular endothelial growth factor; and (iv) in contrast with full-length HGF, N does not bind to the c-met receptor in vitro, but fully retains its heparin-binding capacity. Our results suggest that N inhibits angiogenesis not by disrupting the HGF/c-met interaction but rather by interfering with the endothelial glycosaminoglycans, which are the secondary binding sites of HGF.  相似文献   

12.
13.
By transfection of the expression plasmid containing a human c-met cDNA into COS-7 cells, high-affinity binding sites specific for HGF with a Kd value of 30 pM were newly detected. Furthermore, only in the c-met transfected COS-7 cells, but not in the control COS-7 cells, DNA synthesis was markedly induced in response to HGF. Thus, transient expression of exogenous c-met cDNA resulted in the appearance of high-affinity receptor for HGF and conversion of the normally non-responsive COS-7 cells into the HGF-responsive cells. These results provide evidence for identifying the c-met product as a signal transducing high-affinity receptor for HGF.  相似文献   

14.
Protein tyrosine residue (Y) nitration, a post-translational chemical-modification mode, has been associated with changes in protein activity and function; hence the accumulation of specific nitrated proteins in tissues may be used to monitor the onset and progression of pathological disorders. To verify the possible impact of nitration on postnatal muscle growth and regeneration, a pilot study was designed to examine the nitration/dysfunction of hepatocyte growth factor (HGF), a key ligand that is released from the extracellular tethering and activates myogenic stem satellite cells to enter the cell cycle upon muscle stretch and injury. Exposure of recombinant HGF (a hetero-dimer of α- and β-chains) to peroxynitrite induces Y nitration in HGF α-chain under physiological conditions. Physiological significance of this finding was emphasized by Western blotting that showed the NK1 segment of HGF (including a K1 domain critical for signaling-receptor c-met binding) undergoes nitration with a primary target of Y198. Peroxynitrite treatment abolished HGF-agonistic activity of the NK1 segment, as revealed by in vitro c-met binding and bromodeoxyuridine-incorporation assays. Importantly, direct-immunofluorescence microscopy of rat lower hind-limb muscles from two aged-groups (2-month-old “young” and 12-month-old “retired/adult”) provided in vivo evidence for age-related nitration of extracellular HGF (Y198). Overall, findings provide the insight that HGF/NK1 nitration/dysfunction perturbs myogenic stem cell dynamics and homeostasis; hence NK1 nitration may stimulate progression of muscular disorders and diseases including sarcopenia.  相似文献   

15.
Functional relationships between epidermal growth factor (EGF) and neural tissues have of late attracted increasing interest. However, in spite of reported EGF effects on neurons, the expression of the EGF receptor (EGF-R) has not yet been unambiguously demonstrated in these cells. This 170-kDa protein bears an intracellular tyrosine kinase domain in which activity is ligand-dependent. We give definitive evidence here for its presence in neonatal and adult rat neurons showing also, for the first time, its binding and functional tyrosine kinase activities in the synaptic region. Immunohistochemistry using a polyclonal antibody prepared against the receptor purified from rat liver showed positive staining localized exclusively to neurons without regionalization to any particular brain zone. Binding studies made in Percoll-obtained synaptosomes revealed specific high affinity 125I-EGF binding sites (Kd, 1.42 x 10(-10) +/- 0.58 M) accounting for 17% of total binding and a great majority of low affinity (Kd, 2.55 x 10(-9) +/- 0.35 M) binding sites. Higher binding capacity was found in synaptosomal fractions obtained from newborn rats. The identity of the synaptosomal EGF binding activity with the 170-kDA EGF-R protein was demonstrated by cross-linking experiments. Furthermore, EGF-Affi-Prep affinity chromatography adsorbs a 170-kDa protein with EGF-R immunoreactivity from whole homogenates of adult rat brain. Phosphorylation assays made in freeze-thawed or intact synaptosomes showed EGF-induced tyrosine phosphorylation in the range of 170-, 126-150-, 124-, 113-, 98-, and 70-kDa proteins including the EGF-R. Thus, the EGF-R/EGF regulatory system could have a role in synaptic function that remains to be explored.  相似文献   

16.
The receptor for hepatocyte growth factor, also known as scatter factor (HGF/SF), has recently been identified as the 190-kDa heterodimeric tyrosine kinase encoded by the MET proto-oncogene (p190MET). The signaling pathway(s) triggered by HGF/SF are unknown. In A549 cells, a lung epithelial cell line, nanomolar concentrations of HGF/SF induced tyrosine phosphorylation of the p190MET receptor. The autophosphorylated receptor coprecipitated with phosphatidylinositol 3-kinase (PI 3-kinase) activity. In GTL16 cells, a cell line derived from a gastric carcinoma, the p190MET receptor, overexpressed and constitutively phosphorylated on tyrosine, coprecipitated with PI 3-kinase activity and with the 85-kDa PI 3-kinase subunit. In these cells activation of protein kinase C or the increase of intracellular [Ca2+] inhibits tyrosine phosphorylation of the p190MET receptor as well as the association with both PI 3-kinase activity and the 85-kDa subunit of the enzyme. In an in vitro assay, tyrosine phosphorylation of the immobilized p190MET receptor was required for binding of PI 3-kinase from cell lysates. These data strongly suggest that the signaling pathway activated by the HGF/SF receptor includes generation of D-3-phosphorylated inositol phospholipids.  相似文献   

17.
Hepatocyte growth factor (HGF) exerts proliferative activities in thyrocytes upon binding to its tyrosine kinase receptor c-met and is also expressed in benign thyroid nodules as well as in Hashimoto''s thyroiditis (HT).The simultaneous expression of HGF/c-met and three trasducers of tyrosine kinase receptors (STAT3, PI3K, RHO) in both the nodular and extranodular tissues were studied by immunohistochemistry in 50 benign thyroid nodules (NGs), 25 of which associated with HT. The ligand/tyrosine kinase receptor pair HGF/c-met and the two trasducers PI3K and RHO were expressed in NGs, regardless of association with HT, with a higher positive cases percentage in HT-associated NGs compared to not HT-associated NGs (25/25 or 100% vs 7/25 or 28%; P<0.001). HGF, PI3K and RHO expression was only stromal (fibroblasts and endothelial cells), in all 32 reactive NGs, while c-met localization was consistently epithelial (thyrocyes). Immunoreactions for HGF, c-met, PI3K and RHO were also apparent in the extra-nodular tissue of HT specimens, where HGF and PI3K were expressed not only in stromal cells but also in thyrocyes along with the c-met. Finally, a positive correlation was observed between the proportion of HGF, c-met, PI3K follicular cells and the grade of lymphoid aggregates in HT. In conclusion, HGF, c-met, PI3K are much more frequently and highly expressed in HT compared to NGs, and among all NGs in those present in the context of HT. A paracrine effect of HFG/c-met on nodule development, based on the prevalent stromal expression, may be suggested along with a major role of HGF/c-met and PI3K in HT. Finally, the expression of such molecules in HT may be regulated by lymphoid infiltrate.Key words: HGF/c-met signaling, PI3K, RHO, Hashimoto''s thyroiditis, thyroid nodules.  相似文献   

18.
Plant cells in culture secrete a sulfated peptide named phytosulfokine-alpha (PSK-alpha), and this peptide induces the cell division and/or cell differentiation by means of specific high and low affinity receptors. Putative receptor proteins for this autocrine type growth factor were identified by photoaffinity labeling of plasma membrane fractions derived from rice suspension cells. Incubation of membranes with a photoactivable (125)I-labeled PSK-alpha analog, [N(epsilon)-(4-azidosalicyl)Lys(5)]PSK-alpha (AS-PSK-alpha), followed by UV irradiation resulted in specific labeling of 120- and 160-kDa bands in SDS-polyacrylamide gel electrophoresis. The labeling of both bands was completely inhibited by unlabeled PSK-alpha and partially decreased by PSK-alpha analogs possessing moderate binding activities. In contrast, PSK-alpha analogs that have no biological activity showed no competition for (125)I-AS-PSK-alpha binding, confirming the specificity of binding proteins. Analysis of the affinity of (125)I incorporation into the protein by ligand saturation experiments gave apparent K(d) values of 5.0 nm for the 120-kDa band and 5.4 nm for the 160-kDa band, suggesting that both proteins correspond to the high affinity binding site. Treatment of (125)I-AS-PSK-alpha cross-linked proteins with peptide N-glycosidase F demonstrated that both proteins contained approximately 10 kDa of N-linked oligosaccharides. Specific cross-linking of (125)I-AS-PSK-alpha was also observed by using plasma membranes derived from carrot and tobacco cells, indicating the widespread occurrence of the binding proteins. Together, these data suggest that the 120- and 160-kDa proteins are PSK-alpha receptors that mediate the biological activities of PSK-alpha.  相似文献   

19.
Transforming growth factor beta (TGF beta) regulates the growth of human umbilical vein endothelial cells (HUVEC) differently depending on the isoform of TGF beta and the culture conditions. The cells are resistant to growth inhibition by TGF beta when the cells are cultured on substratum coated with gelatin. However, the proliferation of HUVEC cultured on substratum without a gelatin coating is inhibited by TGF beta, depending on the isoform and concentration of TGF beta. Binding assays with 125I-TGF beta 1 reveal that HUVEC contain a single class of high-affinity (Kd = 4.4 pM) TGF beta 1 binding sites with 8500 sites per cell. Affinity cross-linking studies demonstrate that HUVEC express 180 and 80 kDa TGF beta 1 binding sites that do not bind TGF beta 2. The reduction and the removal of glycosaminoglycans does not affect the electrophoretic mobility of the 180-kDa binding protein cross-linked with 125I-TGF beta 1. Therefore, the 180-kDa TGF beta 1 binding protein is not related to the type III TGF beta receptor, but might be a novel TGF beta 1-specific receptor/binding protein expressed on vascular endothelial cells. The expression of TGF beta 1 binding sites is not affected by the presence or absence of the gelatin coating on the culture substratum. The data suggest that a gelatin coating does not regulate the susceptibility of HUVEC to TGF beta 1 at the level of the receptor/binding proteins, and that growth inhibition of HUVEC by TGF beta 1 is linked to the regulation of extracellular matrices required for the interaction between the cells and the substratum.  相似文献   

20.
Hepatocyte growth factor (HGF) is a plasminogen-like protein with an alpha chain linked to a trypsin-like beta chain without peptidase activity. The interaction of HGF with c-met, a receptor tyrosine kinase expressed by many cells, is important in cell growth, migration, and formation of endothelial and epithelial tubes. Stimulation of c-met requires two-chain, disulfide-linked HGF. Portions of an alpha chain containing an N-terminal segment and four kringle domains (NK4) antagonize HGF activity. Until now, no physiological pathway for generating NK4 was known. Here we show that chymases, which are chymotryptic peptidases secreted by mast cells, hydrolyze HGF, thereby abolishing scatter factor activity while generating an NK4-like antagonist of HGF scatter factor activity. Thus, chymase interferes with HGF directly by destroying active protein and indirectly by generating an antagonist. The site of hydrolysis, Leu480, lies in the alpha chain on the N-terminal side of the cysteine linking the alpha and beta chains. This site appears to be specific for HGF because chymase does not hydrolyze other plasminogen-like proteins, such as macrophage-stimulating protein and plasminogen itself. Mast cell/neutrophil cathepsin G and neutrophil elastase generate similar fragments of HGF by cleaving near the chymase site. Mast cell and neutrophil peptidases are secreted during tissue injury, infection, ischemia, and allergic inflammation, where they may oppose HGF effects on epithelial repair. Thus, HGF possesses an "inactivation segment" that serves as an Achilles' heel attacked by inflammatory proteases. This work reveals a potential physiological pathway for inactivation of HGF and generation of NK4-like antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号