首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

2.
Tobacco leaves were labelled with tritiated undine for 30 or 120 minutes at different times after systemic infection with tobacco mosaic virus. RNA was extracted and separated into three fractions: one enriched in RF (replicative form), one enriched in RI (replicative intermediate), and one containing the bulk of single-stranded RNA. Radioactivity in plus strands (viral RNA) and minus strands (complementary RNA) was determined in each fraction by an isotope dilution assay. The amount of minus strands in the RP and RI fractions and the amount of plus strands in the single-stranded RNA fraction were also determined.Minus-strand synthesis was twice as high a few hours after the outbreak of visible symptoms as during the subsequent large accumulation of plus strands. At the early stage of virus production, the specific radioactivity of the minus strands was three- to fourfold that of the total RNA. Later it was about the same as that of the total RNA. As minus strands constitute a constant part of the total RNA at the later stages, this observation suggests that breakdown of minus strands is small.The specific radioactivity of minus strands was the same in corresponding RF and RI fractions. As the turn-over of minus strands appears to be small, a rapid interconversion of the two RNA types is indicated.In RF and RI the radioactivity in plus strands was between 6 and 50 times greater than that in minus strands. The specific radioactivity of plus strands was greater in RF and RI than in the single-stranded RNA, supporting the concept that both RF and RI have a precursor role for viral RNA.  相似文献   

3.
Replication of polyoma DNA in nuclear extracts and nucleoprotein complexes.   总被引:2,自引:0,他引:2  
Viral nucleoprotein complexes containing radioactive form l DNA or replicative intermediates were extracted from nuclei isolated from polyoma-infected 3T6 fibroblasts, pulse labelled with [3H]thymidine. Such extracts incorporated labelled dGTP into viral DNA, similar to intact isolated nuclei, but at a decreased rate and for shorter periods. The two kinds of nucleoprotein complexes containing form l DNA or replicative intermediates were separated and purified. Each complex retained some capacity to incorporate labelled dGTP and this reaction was stimulated by ATP. The new DNA consisted mainly of short strands hydrogen-bonded to the template. With replicative intermediate complexes incorporation occurred at random into different parts of the viral DNA, while form l complexes incorporated dGTP preferentially into a region around the origin of replication. A crude preparation of T-antigen stimulated the incorporation. The amount of synthesis was low and it was not possible to decide with certainty whether some of the incorporation observed with form 1 complexes represented initiation of new rounds of replication or whether it represented elongation of early replicative intermediates.  相似文献   

4.
In a preceding paper (Schröder and Kaerner, 1972) a rolling circle mechanism has been described for the replication of bacteriophage φX174 replicative form. Replication involved nicking and elongation of the viral (positive) strand component of the RF molecule resulting in the displacement of a single-strand tail of increasing length. The synthesis of the new complementary (negative) strand on the single-strand tails appears to be initiated with considerable delay and converts the tail into double-stranded DNA. Before the new negative strand is completed the replicative intermediates split into (I) a complete RF molecule containing the “old” negative and the new positive strand, and (II) a linear, partially double-stranded “tail” consisting of the complete old positive strand and a fragment of the new negative strand.The present study is concerned with the fate during RF replication of these fragments of the rolling circles. Those RFII molecules containing the old negative strands appear to go into further replication rounds repeatedly. Some of the tails were found in the infected cells in their original linear form. “Gapped” RFII molecules, which have been described earlier by Schekman and co-workers (Schekman &; Ray, 1971; Schekman et al., 1971), are supposed to originate from the tails of rolling circle intermediates by circularization of their positive strand components. Evidence is provided by our experiments that even late during RF replication these gaps are present only in the negative strands of RFII. Appropriate chase experiments indicated that the tails finally are converted to RFI molecules. Progeny RFI molecules could not be observed to start new replication rounds under our conditions although we cannot exclude that this might happen to some minor extent.The results presented suggest that the master templates for RF replication are the first negative strands to be formed, rather than the parental positive strands.  相似文献   

5.
6.
7.
Five distinct DNA replicating intermediates have been separated from lysates of bacteriophage G4-infected cells pulse-labelled during the period of replicative form synthesis using propidium diiodide/caesium chloride gradients. These are a partially single-stranded theta structure that is labelled in both the viral and complementary DNA strands; partially single-stranded circles, some with an unfinished viral DNA strand (25%) and some with an unfinished complementary DNA strand (75%); replicative form II(RFII) and replicative form I(RFI) DNA labelled only in the complementary DNA strand. To explain the pulse-label data a model is proposed in which G4 replicative form replication takes place by a displacement mechanism in which synthesis of the new viral DNA strand displaces the old viral DNA strand as a single-stranded DNA loop (D-loop) and when the displacement reaches half way round the molecule (the origin of synthesis of the G4 viral and complementary DNA strands are on opposite sides of the genome, Martin &; Godson 1977) synthesis of the complementary DNA strand starts, but in the opposite direction. Strand separation of the parent helix runs ahead of DNA synthesis, releasing two partially single-stranded circles from the replicating structure which then complete their replication as free single-stranded DNA circles. No evidence was found to support a rolling circle displacement mechanism of G4 replicative form synthesis.  相似文献   

8.
Electron microscope partial denaturation maps of two viral DNAs, simian virus 40 and φX174 replicative form, have been obtained. A simple computer program has been developed to predict denaturation maps from any given DNA sequence, based on the percentage of A · T base-pairs along the molecule. Maps constructed from the SV40 DNA and φX174 replicative form DNA base sequence show a good correlation with the experimental maps. The results show that the regions of a DNA molecule that denature first are, in fact, those regions with the highest content of adenine and thymine base-pairs.  相似文献   

9.
A dense complex has been isolated from bacteria infected with gene V amber mutant f 1 bacteriophage. The major protein in this complex is the f 1 bacteriophage-specific gene II protein. Other proteins in the complex include the f 1 bacteriophage coat protein and proteins which migrate on sodium dodecyl sulfate/polyacrylamide gel electrophoresis with the f1 bacteriophage-specific gene III, gene IV and X protein. A protein of approximately 20,000 Mr is also present in the complex. Examination of bacteria infected with gene V mutant f1 bacteriophage revealed the complex as a densely staining amorphous body which appears to be associated with the cytoplasmic membrane. Bacteria infected with f1 bacteriophage that contain amber mutations in genes other than gene V do not contain this complex.  相似文献   

10.
Lack of repair of ultraviolet light damage in Mycoplasma gallisepticum   总被引:10,自引:0,他引:10  
Molecules with single-stranded tails (rolling circles) were isolated as replicating intermediates in G4 progeny single-stranded DNA synthesis. Lysates from infected cells harvested late in infection during single-stranded DNA synthesis were not deproteinised but analysed directly in caesium chloride and propidium diiodide gradients. The gradient fractionated them on the basis of tail length. If the lysates were first deproteinised however, the tailed replicative intermediates banded as a peak at a density just greater than that of replicative form II DNA (RFII) and did not spread down the gradient. The origin of synthesis of the viral strand tail was mapped by electron microscopy as 55 to 60% away from the single EcoRI cleavage site. Termination molecules finishing a round of viral strand DNA synthesis have been identified as molecules consisting of a closed single-stranded DNA circle attached by a very small region to the parent double-stranded DNA circle.  相似文献   

11.
The precise positions of the origin of replication3 and of the D-loop within the HpaII restriction map of HeLa cell mitochondrial DNA have been investigated. For this purpose, 7 S DNA, which is the heavy-chain initiation sequence, was used as a template for fragment-primed DNA synthesis by Escherichia coli DNA polymerase I. The results indicate clearly that the origin of replication lies in HpaII fragment 8 at about 80 base-pairs from the border with fragment 17, and that the D-loop region extends from this site, through fragment 17, to a position in fragment 10 which is about 365 base-pairs from the border with fragment 17. Sequential digestion of fragment 8 with HaeIII enzyme has allowed the isolation of a subfragment, about 200 base-pairs long, that contains the origin of replication.  相似文献   

12.
Arabinosyl cytosine at very low concentrations (5–100 nmolar) inhibits the incorporation of [3H]thymidine into polyoma DNA of infected mouse fibroblasts without affecting the labeling of the [3H]dTTP pool. The specific activities of these pools were determined by a new simple method. Inhibition of DNA synthesis affects chain elongation and not initiation of new rounds of replication.  相似文献   

13.
A sequence of 245 base-pairs (oriC) in the replication origin of the Escherichia coli K-12 chromosome has been shown to provide all the information essential for initiation of bidirectional replication. In order to elucidate the sequence organization of oriC, numerous mutants carrying a single-to-multiple transitions from G X C to A X T base-pair were constructed by localized mutagenesis in vitro, which uses sodium bisulfite, and the correlation between the mutation sites and replicating ability (Ori function) was systematically analyzed. By isolating non-defective (Ori+) mutants with multiple base changes, transitions at 71 positions among 101 G X C pairs in oriC were found to have no effect on Ori function. Investigation of defective (Ori-) mutants, on the other hand, showed that individual replacements at 18 positions were detrimental to Ori function to some extent. These irreplaceable G X C pairs fell in the positions where no substitution was detected in the Ori+ mutants. The defect of the Ori- mutants with a single base substitution was generally weaker than that of the previously constructed Ori- mutants lacking a part of oriC. The addition of two or more base changes each giving a faint Ori- phenotype, however, resulted in a more intensive Ori- phenotype. We have previously demonstrated that oriC contains several regions where deletion or insertion of oligonucleotides leads to strong Ori- phenotypes. Transitions in those areas did not cause any defect of Ori function. Combining present results on base substitution mutants with the previous observations together, we assumed that the oriC sequence provides multiple interaction sites with replication initiation factors, and the precise arrangement of these sites are required for Ori function.  相似文献   

14.
Structure of the ribonucleic acid bacteriophage R17   总被引:10,自引:0,他引:10  
Vasquez, Cesar (Institut de Recherches sur le Cancer, Villejuif, Seine, France), Nicole Granboulan, and Richard M. Franklin. Structure of the ribonucleic acid bacteriophage R17. J. Bacteriol. 92:1779-1786. 1966.-The morphology of bacteriophage R17 was studied by electron microscopy of negatively stained virions. The hexagonal shape, the presence of a maximum of 10 units at the periphery, and especially the observation of central fivefold points of symmetry with neighboring five and six coordinated units indicated icosahedral symmetry with 32 morphological units. Although the exact shape of the polyhedron could not be specified, the number of morphological units agreed with the chemically estimated number of structural units.  相似文献   

15.
The conversion of both parental- and progeny-nascent open circular M13 RF DNA into covalently closed RF I is drastically reduced in an E. coli mutant deficient in the 5′ → 3′ exonuclease associated with DNA polymerase I. The nascent progeny RF DNA also contains a significant proportion of fragments of smaller than unit length.  相似文献   

16.
17.
The laser-excited Raman spectrum of the RNA virus, R17, is shown to contain a large number of Raman lines assignable to scattering by vibrations of the nucleotide residues of RNA and the amino-acid residues of protein capsomers. The Raman lines from specific nucleotide vibrations in the phage are compared with their counterparts in the spectrum of protein-free RNA to suggest many similarities of RNA structure in the phage and protein-free states. However, the average configuration of guanine residues in the phage is apparently very different from that of protein-free RNA, suggesting that guanine plays an important role in RNA-protein interactions.  相似文献   

18.
The mechanism of enzymatic elongation by Escherichia coli DNA polymerase II of a DNA primer, which is annealed to a unique position on the bacteriophage fd viral DNA, has been studied. The enzyme is found to dissociate from the substrate at specific positions on the genome which act as “barriers” to further primer extension. It is believed these are sites of secondary structure in the DNA. When the template is complexed with E. coli DNA binding protein many of these barriers are eliminated and the enzyme remains associated with the same primer-template molecule during extensive intervals of DNA synthesis. Despite the presence of E. coli DNA binding protein, at least one barrier on the fd genome remains rate-limiting to chain extension and disturbs the otherwise processive mechanism of DNA synthesis. This barrier is overcome by increasing the concentration of enzyme.In contrast, it is found that DNA polymerase I is not rate-limited by structural barriers in the template, however, it exhibits a non-processive mechanism of elongation.These findings provide a framework for understanding the necessity for participation of proteins other than a DNA polymerase in chain extension during chromosomal replication.  相似文献   

19.
Summary The RNA structures synthesized in vitro by a crude enzyme complex from tobacco mosaic virus (TMV)-infected leaves have been analyzed; the major viral-specific products were similar to TMV-replicative form (RF) and-replicative intermediate (RI) in electrophoretic behavior and ribonuclease sensitivity. Synthesis of these RF-like and RI-like structures neither required nor responded to added viral RNA, but did require all four ribonucleotide triphosphates. Enriched radiolabeled RF-like and RI-like RNA fractions were isolated from non-denaturing agarose gels by electroelution and hybridized to a collection of TMV sequences cloned into bacteriophage M13. Enriched RF-RNA hybridized to sequences of both plus and minus polarity, while enriched RI-RNA hybridized only to inserts of minus polarity, indicating only plus strand synthesis in this fraction. Most of the label incorporated into the plus strand of the enriched RF-RNA was found near the 3-end of this strand, while most of the label incorporated into enriched RI-RNA was found several hundred bases from the 5-end of the plus strand.Paper presented at the first International Congress of Plant Molecular Biology (Savannah, GA, 1985).  相似文献   

20.
W M Barnes 《Gene》1979,5(2):127-139
In order to create a ready source of single-stranded DNA for DNA sequence determination by the dideoxy chain-termination method, the promoter-proximal part of the histidine operon, the hisOGD region of Salmonella typhimurium, was cloned onto the single-stranded phage M13. Both orientations of the his DNA were cloned to supply DNA template for sequencing of each strand. Insertion was achieved at an HaeIII site in the intergenic region (IR) of M13, and a single EcoRI site was purposely regenerated at one boundary of the his DNA insert. Infected colonies, not plaques, were selected using the hisD gene as a selective marker. The single RI site and the hisD marker for auxotrophic selection represent improvements on the wild type M13 as a single-stranded vector for cloning other DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号