首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexually dimorphic head shape is common in vertebrates from teleosts to mammals. Herein we document that cephalic sexual dimorphism is also found in the cartilaginous fishes (Chondrichthyes). Male bonnethead sharks develop a prominent bulge along the anterior margin of the cephalofoil at the onset of sexual maturity. This contrasts with the uniformly rounded anterior margin of adult females and juveniles and embryos of both sexes. The anterior cephalic bulge is produced by elongation of the rod-like rostral cartilages, and its appearance corresponds temporally with the elongation of the rod-like cartilages of the male intromittent organs (claspers). We propose that the rostral cartilage elongation is a byproduct of endocrinological changes at the onset of sexual maturity that stimulate growth of the clasper cartilages. The basal location of the chondrichthyan fishes within the vertebrate clade extends the earliest appearance of cephalic sexual dimorphism among the vertebrates.  相似文献   

2.
Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw‐bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem‐group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems. © 2014 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London  相似文献   

3.
4.
Parthenogenesis has been documented in all major jawed vertebrate lineages except mammals and cartilaginous fishes (class Chondrichthyes: sharks, batoids and chimeras). Reports of captive female sharks giving birth despite being held in the extended absence of males have generally been ascribed to prior matings coupled with long-term sperm storage by the females. Here, we provide the first genetic evidence for chondrichthyan parthenogenesis, involving a hammerhead shark (Sphyrna tiburo). This finding also broadens the known occurrence of a specific type of asexual development (automictic parthenogenesis) among vertebrates, extending recently raised concerns about the potential negative effect of this type of facultative parthenogenesis on the genetic diversity of threatened vertebrate species.  相似文献   

5.
The germinal epithelium, i.e., the site of germ cell production in males and females, has maintained a constant form and function throughout 500 million years of vertebrate evolution. The distinguishing characteristic of germinal epithelia among all vertebrates, males, and females, is the presence of germ cells among somatic epithelial cells. The somatic epithelial cells, Sertoli cells in males or follicle (granulosa) cells in females, encompass and isolate germ cells. Morphology of all vertebrate germinal epithelia conforms to the standard definition of an epithelium: epithelial cells are interconnected, border a body surface or lumen, are avascular and are supported by a basement membrane. Variation in morphology of gonads, which develop from the germinal epithelium, is correlated with the evolution of reproductive modes. In hagfishes, lampreys, and elasmobranchs, the germinal epithelia of males produce spermatocysts. A major rearrangement of testis morphology diagnoses osteichthyans: the spermatocysts are arranged in tubules or lobules. In protogynous (female to male) sex reversal in teleost fishes, female germinal epithelial cells (prefollicle cells) and oogonia transform into the first male somatic cells (Sertoli cells) and spermatogonia in the developing testis lobules. This common origin of cell types from the germinal epithelium in fishes with protogynous sex reversal supports the homology of Sertoli cells and follicle cells. Spermatogenesis in amphibians develops within spermatocysts in testis lobules. In amniotes vertebrates, the testis is composed of seminiferous tubules wherein spermatogenesis occurs radially. Emerging research indicates that some mammals do not have lifetime determinate fecundity. The fact emerged that germinal epithelia occur in the gonads of all vertebrates examined herein of both sexes and has the same form and function across all vertebrate taxa. Continued study of the form and function of the germinal epithelium in vertebrates will increasingly clarify our understanding of vertebrate reproduction. J. Morphol. 277:1014–1044, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Living vertebrate diversity comprises hagfishes and lampreys (Cyclostomata), elasmobranchs and holocephalans (Chondrichthyes), and bony fish which include tetrapods (Osteichthyes). Based on dissections and an extensive comparative analysis, we provide an updated overview of the anatomy, homologies and evolution of cyclostome and chondrichthyan cephalic muscles, with osteichthyans as primary comparative taxa. The analysis also infers plesiomorphic conditions for vertebrates and gnathostomes. We follow a uniform myological terminology for the Gnathostomata to demonstrate that the last common ancestor of extant vertebrates probably had a single intermandibularis and other mandibular muscles (labial muscles), some constrictores hyoidei and branchiales, and epibranchial and hypobranchial muscle sheets. The division of the cucullaris into levatores arcuum branchialium and protractor pectoralis is an osteichthyan synapomorphy and reflects an evolutionary trend towards a greater separation between the head and pectoral girdle that culminated in the formation of the tetrapod neck. Hence, this paper addresses a long‐standing, central issue regarding vertebrate comparative anatomy. It thus provides a valuable basis for future evolutionary, developmental and functional studies of vertebrates and/or of specific vertebrate subgroups/model organisms. © 2014 The Linnean Society of London  相似文献   

7.
In ray-finned fishes, which comprise nearly half of all vertebrate species, the telencephalon does not evaginate, as it does in other vertebrates, but instead everts. No detailed explanation for this species difference has ever been offered. Here we propose that telencephalic eversion evolved because ray-finned fish embryos are so small that their telencephalon cannot evaginate but must, instead, squeeze into the space just dorsal to the developing nasal epithelia and rostral to the eyes-morphogenetic movements that amount to eversion. Evidence for this hypothesis derives from cladistic analyses, which show that early ray-finned fishes reduced their adult body size and adopted a novel reproductive strategy, based on the production of myriad minute young. Because body size tends to be inversely proportional to brain:body ratio, this phylogenetic reduction in body size implies that embryonic ray-finned fishes should have proportionately larger brains than embryos of species whose telencephalons evaginate. This prediction was confirmed by comparing serially sectioned heads of representative ray-finned and cartilaginous fish embryos at several stages of development. The brain, excluding its ventricles, occupies 36-46% of the cranial cavity in embryonic ray-finned fishes, but less than 20% in embryonic sharks. Moreover, three-dimensional reconstructions show that in embryonic ray-finned fishes the telencephalon has no room for a full-fledged evagination; instead, it spreads into the spaces just dorsal and caudal to the developing nasal epithelia. These morphogenetic movements, in conjunction with a thinning of the forebrain roof, generate telencephalic eversion.  相似文献   

8.
在福建省已建立的 3 2个省级以上的自然保护区中 ,78 1 %分布在中亚热带 ,其余 2 2 9%分布在南亚热带。分析表明 :在福建省已建立的省级以上的自然保护区内分布的野生脊椎动物资源 ,有 5 0目 1 87科 95 1种。占全省国土面积 2 3 3 %的自然保护区保护了全省野生脊椎动物物种数的 5 7 7% ,尚有 696种野生动物在保护区内未发现或未有分布 ,主要是海洋哺乳动物、海洋性鸟类、海蛇类及海洋性鱼类。根据已建自然保护区的分布和已查明保护区内野生动物分布情况 ,从物种保护的角度提出今后保护区建设重点为沿海地区 ,并提出通过区域保护区网络建设 ,强化对野生动物的保护功能。  相似文献   

9.
Cartilaginous fishes (chondrichthyans) have traditionally been taken as an early offshoot among jawed vertebrates. To examine some crucial chondrichthyan relationships, we have sequenced the mitochondrial genomes of the holocephalan Chimaera monstrosa (ratfish) and the basal galeomorph species Heterodontus francisci (horn shark) and analysed them together with the corresponding data set of several other chondrichthyans, teleosts, the coelacanth, the African lungfish and the bichir. The rooting point of the tree was established using unequivocal outgroups, the sea lamprey , the sea lancelet or echinoderms. The phylogenetic analyses identified monophyletic Chondrichthyes in a terminal position in the piscine tree, lending no support to the traditionally accepted basal position of cartilaginous fishes among extant gnathostomes. The findings suggest that the cartilage characterizing extant chondrichthyans is a retention of an embryonic condition, thus representing a derived rather than a primitive phylogenetic and developmental stage. Similarly, the analyses suggest that the open gill slits of neoselachians (sharks and rays) constitute a derived state compared to the operculum (gill cover) characterizing bony fishes and holocephalans. The analyses did not support the so-called Squalea/Galea hypothesis which posits that batomorphs (sharks, rays) have arisen from recent selachians (sharks). Inconsistent with the common understanding of piscine and gnathostome evolution, the two taxa having lungs, the African lungfish and the bichir, had a basal position in the piscine tree. The findings put into question the phylogenetic validity of the taxonomic nomenclature attributed to various vertebrate, notably piscine, clades.  相似文献   

10.
基因倍增和脊椎动物起源   总被引:1,自引:1,他引:0  
有机体基因复制导致基因复杂性增加及其和脊椎动物起源的关系已经成为进化生物学研究的热点。20世纪70年代由Ohno提出后经Holland等修正的原始脊索动物经两轮基因组复制产生脊椎动物的假设目前已被广泛接受。脊椎动物起源和进化过程中发生过两轮基因组复制的主要证据有三点:(1)据估计脊椎动物基因组内编码基因数目大约相当于果蝇、海鞘等无脊椎动物的4倍;原口动物如果蝇和后口动物如头索动物文昌鱼的基因组大都只有单拷贝的基因,而脊椎动物的基因组则通常有4个同属于一个家族的基因。(2)无脊椎动物如节肢动物、海胆和头索动物文昌鱼都只有一个Hox基因簇,而脊椎动物除鱼类外,有7个具有Hox基因簇,其余都具有4个Hox基因簇。(3)基因作图证明,不但在鱼类和哺乳动物染色体广大片段上基因顺序相似,而且有证据显示哺乳动物基因组不同染色体之间存在相似性。据认为第一次基因倍增发生在脊椎动物与头索动物分开之后,第二次基因倍增发生在有颌类脊椎动物和无颌类脊椎动物分开以后。但是,基因是逐个发生倍增,还是通过基因组内某些DNA片段抑或整个基因组的加倍而实现的,目前还颇有争议。  相似文献   

11.
A large number of congenital heart defects associated with mortality in humans are those that affect the cardiac outflow tract, and this provides a strong imperative to understand its development during embryogenesis. While there is wide phylogenetic variation in adult vertebrate heart morphology, recent work has demonstrated evolutionary conservation in the early processes of cardiogenesis, including that of the outflow tract. This, along with the utility and high reproductive potential of fish species such as Danio rerio , Oryzias latipes etc. , suggests that fishes may provide ideal comparative biological models to facilitate a better understanding of this poorly understood region of the heart. In this review, the authors present the current understanding of both phylogeny and ontogeny of the cardiac outflow tract in fishes and examine how new molecular studies are informing the phylogenetic relationships and evolutionary trajectories that have been proposed. The authors also attempt to address some of the issues of nomenclature that confuse this area of research.  相似文献   

12.
The neural crest is an embryonic cell population unique to vertebrates. During vertebrate embryogenesis, neural crest cells are first induced from the neural plate border; subsequently, they delaminate from the dorsal neural tube and migrate to their destination, where they differentiate into a wide variety of derivatives. The emergence of the neural crest is thought to be responsible for the evolution of many complex novel structures of vertebrates that are lacking in invertebrate chordates. Despite its central importance in understanding the origin of vertebrates, the evolutionary origin of the neural crest remains elusive. The basal chordate amphioxus (Branchiostoma floridae) occupies an outgroup position that is useful for investigating this question. In this review, I summarize recent genomic and comparative developmental studies between amphioxus and vertebrates and discuss their implications for the evolutionary origin of neural crest cells. I focus mainly on the origin of the gene regulatory network underlying neural crest development, and suggest several hypotheses regarding how this network could have been assembled during early vertebrate evolution.  相似文献   

13.
Among vertebrate classes, fishes exhibit by far the greatest variability in competitive and cooperative behaviors in male reproduction. Scramble competition between reproductive males is one possibility. Another possibility occurs when resources, mates, or locations can be monopolized, in which case males may invest in primary access to fertilizations by adopting a "bourgeois" strategy, or they may employ alternative mating tactics to evade the reproductive monopoly of other males. Adaptations in morphology, physiology, and behavior to bourgeois and alternative phenotypes are highly divergent. Here I review the functional characteristics that differ between bourgeois and parasitic phenotypes, and discuss the variability of alternative reproductive tactics at the levels of plasticity, determination, and selection. Examples will illustrate the importance of ecology, and will suggest that variation in reproductive tactics is largely adaptive. Behavioral solutions to competition for mates and fertilizations often involve agonistic behavior and conflict, but also cooperation among competitors (e.g., when subordinate males pay a price to bourgeois males for gaining access to fertilizable eggs). Application of molecular genetic tools has helped to uncover intricate sexual and social relationships in various fish species, including species that display some of the most complex reproductive and social patterns known among the vertebrates.  相似文献   

14.
主要组织相容性复合体(MHC)是有颌脊椎动物中发现的编码免疫球蛋白受体的高度多态的基因群,因其在免疫系统中的重要作用而备受关注。脊椎动物不同支系间MHC的结构和演化差异较大。尽管MHC基因特征在哺乳类、鸟类、两栖类和鱼类中已被较好地描述,但对爬行动物MHC的了解仍较少。鉴于爬行动物对于理解MHC基因的演化占据很重要的系统发育位置,研究其MHC具有重要意义。本文就近年来爬行动物MHC的分子结构、多态性维持机制、功能和主要应用的研究现状进行了系统地回顾和总结,并展望了其研究前景。  相似文献   

15.
The evolutionary history of muscle development in the paired fins of teleost fish and the limbs of tetrapod vertebrates is still, to a large extent, uncertain. There has been a consensus, however, that in the vertebrate clade the ancestral mechanism of fin and limb muscle development involves the extension of epithelial tissues from the somite into the fin/limb bud. This mechanism has been documented in chondrichthyan, dipnoan, chondrostean and teleost fishes. It has also been assumed that in amniotes, in contrast, individual progenitor cells of muscles migrate from the somites into the limb buds. Neyt et al. now present the exciting finding that in zebrafishes this presumably derived mechanism involving individual cell migration, is present. They conclude, based on data on sharks, zebrafishes, chickens, quails and mice that the derived mechanism was present in the sarcopterygians. This conclusion, however, may be premature in the light of further data available in the literature, which show a highly mosaic distribution of this character in the vertebrate clade. Furthermore, a developmental mode exists that is intermediate between the supposed ancestral and derived modes in teleosts, reptiles and possibly amphibians.  相似文献   

16.
Chondrichthyan fishes have an evolutionary history spanning over 400 million years and are characterized, in part, by internal fertilization. Traditionally, oviparity has been assumed to be the primitive birthing mode for these fishes and for vertebrates in general, with viviparity and matrotrophic nutrition being derived. The fossilized remains of two specimens of Harpagofututor volsellorhinus from the Upper Mississippian of Montana now provide the first direct evidence of matrotrophic live birth in a Palaeozoic chondrichthyan and of superfoetation in an extinct fish. Each female exhibits multiple foetuses of two size groups, indicating simultaneous gestation of multiple litters. There is no evidence of yolk sacs, only preserved organic pigments enveloping the young, suggesting matrotrophically derived material. Young were born large, as head lengths of the largest embryos measured up to 66 per cent of the mother's head length. Comparison of in utero embryos to isolated specimens suggests, unlike all extant chondrichthyans, the absence of a juvenile stage and rapid maturity. These new data suggest the advantages of superfoetative viviparity for a small bodied fish in a 318 Myr old species‐ and predator‐rich marine bay. In the greater view of gnathostome evolution, this finding combines with other recent discoveries to document that multiple, and not necessarily closely related, species of both placoderms and chondrichthyans exhibited viviparity by the Upper Devonian and the Upper Mississippian. The capacity for internal fertilization probably predisposed members of these lineages to develop viviparity so early in gnathostome history. Yet, the surprising range of viviparity exhibited at this stage of vertebrate evolution emphasizes that derived reproductive strategies had evolved in gnathostomes by 380–318 million years ago. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 587–594.  相似文献   

17.
Genetic evidence is provided for parthenogenesis in a large‐bodied shark, the blacktip Carcharhinus limbatus, from the speciose and commercially important family Carcharhinidae, the first verified case of asexual development in this lineage and only the second for any chondrichthyan. The parthenogenetic embryo exhibited elevated homozygosity relative to its mother, indicating that automictic parthenogenesis is the most likely mechanism. Although this finding shows that parthenogenesis is more common and widespread in sharks than previously realized and supports the early existence of parthenogenetic abilities in vertebrates, the adaptive significance of automixis in these ancient fishes remains unclear.  相似文献   

18.
Calcitonin is a 32-amino acid peptide hormone that is best known for its actions in maintaining skeletal integrity and calcium homeostasis in mammals. Calcitonin also appears to function in regulating certain aspects of animal reproduction, but the nature of this role remains unclear, particularly in nonmammalian vertebrates. The present study investigated the relationship between calcitonin and reproduction in the bonnethead shark (Sphyrna tiburo), a well-studied member of the oldest living vertebrate group (i.e. elasmobranchs) known to possess a calcitonin-producing organ. Serum calcitonin concentrations were measured in 28 reproductively mature female S. tiburo using a heterologous enzyme-linked immunosorbent assay (ELISA) system. Sites of calcitonin immunoreactivity were detected in tissues of mature female and embryonic S. tiburo using immunocytochemistry. Significant increases in serum calcitonin concentrations of mature female S. tiburo occurred during early stages of gestation, a period characterized by yolk-dependency of developing embryos. Immunoreactive calcitonin was detected in the duodenum and pancreas of embryonic S. tiburo sampled during the same period. The results from this study suggest that calcitonin obtained from endogenous and/or maternal sources may function in regulating yolk digestion in embryonic S. tiburo. Therefore, the association between calcitonin and reproduction in elasmobranchs may reflect an important role for this hormone in embryonic development.  相似文献   

19.
In fish like in mammals, dopamine (DA) is a major catecholaminergic neurotransmitter that contributes to many functions of the nervous system like sensory perception, tuning of sensori-motor cues, and hypothalamic and pituitary functions. In the eel, DA inhibits gonadal development, and juvenile silver eels remain blocked at a prepubertal stage if their reproductive migration does not occur. From data in other teleosts and vertebrates, it is suggested that DA would be involved also in the last steps of eel reproduction (oocyte maturation, ovulation, and spermiation) as well as in eel reproductive migration (locomotion and olfaction). Investigating dopaminergic systems in the eel may help in understanding the mechanisms of its complex life cycle and provide new data for its conservation and reproduction. In this article we review the biosynthesis and catabolism of catecholamines and discuss available methods to investigate brain dopaminergic systems in vertebrates and their application to the eel. Immunocytochemistry, in situ hybridization, and different tracing methods are used to map dopaminergic neurons and projections in the brain and pituitary and infer their potential functions. Moreover, variations in dopaminergic activity may be approached by means of quantitative methods like quantitative real-time RT-PCR and HPLC. These tools are currently used to study dopaminergic systems in the eel brain, their anatomy, regulation, and potential roles with special emphasis on the regulation of reproduction and reproductive migration. Guest editors: S. Dufour, E. Prévost, E. Rochard & P. Williot Fish and diadromy in Europe (ecology, management, conservation)  相似文献   

20.
The air-breathing fishes have heuristic importance as possible models for the Paleozoic evolution of vertebrate air breathing and the transition to land. A recent hypothesis about this transition suggests that the diverse assemblage of marine amphibious fishes occurring primarily in tropical, high intertidal zone habitats are analogs of early tetrapods and that the intertidal zone, not tropical freshwater lowlands, was the springboard habitat for the Devonian land transition by vertebrates. Here we argue that selection pressures imposed by life in the intertidal zone are insufficient to have resulted in the requisite aerial respiratory capacity or the degree of separation from water required for the vertebrate land transition. The extant marine amphibious fishes, which occur mainly on rocky shores or mudflats, have reached the limit of their niche expansion onto land and remain tied to water by respiratory structures that are less efficient in air and more vulnerable to desiccation than lungs. We further argue that evolutionary contingencies actuated by the Devonian origin of the tetrapods marked a critical point of divergence for a way of life in which selection pressures would operate on the physiology, morphology, and natural history of the different vertebrate groups. While chronically hypoxic and shallow water conditions in the habitats of some primitive bony fishes and some amphibians appear similar to the conditions that prevailed in the Devonian, markedly different selection pressures have operated on other amphibians and bony fishes over the 300 million years since the vertebrate land transition. For example, both egg development and larval metamorphosis in extant amphibians are geared mainly toward compensating for the uncertainty of habitat water quality or even the absence of water by minimizing the time required to develop there. In contrast, reproduction by most intertidal (and amphibious) fishes, all of which are teleosts, remains dependent on a planktonic larval phase and is characterized by specializations (brooding) that minimize overdispersal and maximize recruitment back to the littoral habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号