首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro cultured rat perirenal preadipocyte (PA) was established as a model system to investigate the role of the intracellular pH (pHi) and of the Na~ /H~ exchanger during PA proliferation and differentiation, pH sensitive probe, 2' ,7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF), was employed to measure the pHi of PA and to determine the Na~ /H~ exchange activity. The results showed that there was Na~ /H~ exchange activity in the plasma membrane of PA, FCS stimulated DNA synthesis measured by ~3H-TdR incorporation, and the activation of Na~ /H~ exchanger resulted in phi increase (nearly 0.2 pH unit) within 2 min. Ethyl-isopropyl-amiloride (EIPA), a specific Na~ /H~ exchange inhibitor, inhibited Na~ /H~ exchange activity and DNA synthesis. In the absence of serum insulin did not stimulate DNA synthesis but did induce PA differentiation characterized by the appearance of adiposome in the cell and the enhancement of glycerol-3-phosphate dehydrogenase (G_3PDHase) activity. Meantime, insu  相似文献   

2.
Na+/H+ exchange activity in the plasma membrane of Arabidopsis   总被引:7,自引:0,他引:7       下载免费PDF全文
In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt.  相似文献   

3.
4.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K 1 =1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK M =8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion.  相似文献   

5.
Apical plasma membrane vesicles were prepared from human organ donor colon mucosal scrapings. These vesicles were enriched 10-fold in cysteine-sensitive alkaline phosphatase activity compared to starting homogenates, and showed minimal contamination of microsomal, mitochondrial or basolateral membranes. Transport studies using [22Na] uptake into proximal colonic vesicles demonstrated Na+ and H+ conductances, Na+/H+ exchange and amiloride inhibition of Na+ uptake. The isolation of these apical vesicles will permit detailed study of human colonic transport processes.  相似文献   

6.
Basolateral membrane vesicles from rat jejunal enterocytes, especially purified of brush-border contamination, were used for Na+ uptake. The basolateral membrane vesicles are osmotically active and under our experimental conditions Na+ binding is much lower than transport. An outwardly directed proton gradient stimulates Na+ uptake at both 5 microM and 5 mM concentrations. The proton gradient effect can be inhibited completely by 2 mM amiloride and partially by either FCCP or NH4Cl (NH3 diffusion). Membrane potential effects can be excluded by having valinomycin plus K+ on both sides of the vesicles. These results suggest that there is an Na+/H+ exchanger in the basolateral membrane of rat enterocytes.  相似文献   

7.
8.
We have investigated the release of protons from thrombin-stimulated platelets. Addition of thrombin to suspensions of washed platelets resulted in fast liberation of H+. In the presence of 0.1 mM amiloride, a potent inhibitor of the Na+/H+ transport system, the amount of protons liberated was decreased by about 50%, and was further reduced to about 15% by 1 mM amiloride. Similar inhibition of H+ release was observed after Na+ in the incubating medium had been replaced by choline. We conclude that one of the earliest events in thrombin-stimulated platelets consists of the activation of an Na+/H+ countertransport, which leads to an increase in intracellular pH.  相似文献   

9.
Adult rat hepatocytes in primary culture were examined to determine if Na+-dependent transmembrane Ca2+ fluxes precede reinitiation of DNA synthesis. Studies with 45Ca2+ and atomic absorption measurements of 40Ca2+ showed that hepatocytes lack plasma membrane Na+-Ca2+ exchange activity. Under chemically defined conditions, combinations of mitogens - EGF, insulin, and glucagon - failed to induce transmembrane Ca2+ fluxes early in the prereplicative phase. In addition, a Ca2+ ionophore, A23187, was non-mitogenic. Thus, plasma membrane Na+-Ca2+ exchange is not a mitogenic signal for hepatocytes. Elevated intracellular Ca2+ levels are thought to mediate early prereplicative events required for animal cell proliferation. These conclusions stem partly from findings that A23187, a Ca2+ ionophore, stimulates transmembrane Ca2+ fluxes and proliferation in several cell systems (reviewed in Boynton et al., 1982). Sodium ion fluxes also are implicated as "initiating" mitogenic signals (Koch and Leffert, 1979). In particular, amiloride-sensitive Na+ influxes, stimulated by growth factors, may be necessary to initiate DNA synthesis in rat hepatocytes, mouse and human fibroblasts, rat liver derived cell lines, mouse sympathetic neurons, human lymphocytes, and monkey kidney epithelial cells (reviewed in Leffert, 1982). Several investigators, using cells from electrically excitable tissues (Schellenberg and Swanson, 1981; Eckert and Grosse, 1982), have reported that plasma membrane Na+-Ca2+ exchange carriers regulate intracellular Na+ and Ca2+ concentration. It is unclear if this exchange system exists in non-electrically excitable membranes, especially with regard to hepatocytes (Judah and Ahmed, 1964; van Rossum, 1970). We have here investigated the possible association of Na+ influxes with transmembrane Ca2+ movement following reinitiation of hepatocyte growth.  相似文献   

10.
The Na+/H+ exchanger (NHE) constitutes a gene family containing several isoforms that display different membrane localization and are involved in specialized functions. Although basolateral NHE-1 activity was described in the cortical collecting duct (CCD), the localization and function of other NHE isoforms is not yet clear, This study examines the expression, localization, and regulation of NHE isoforms in a rat cortical collecting duct cell line (RCCD1) that has previously been shown to be a good model of CCD cells. Present studies demonstrate the presence of NHE-1 and NHE-2 isoforms, but not NHE-3 and NHE-4, in RCCD1 cells. Cell monolayers, grown on permeable filters, were placed on special holders allowing independent access to apical and basolateral compartments. Intracellular pH (pHi) regulation was spectrofluorometrically studied in basal conditions and after stimulation by NH4Cl acid load or by a hyperosmotic shock. In order to differentiate the roles of NHE-1 and NHE-2, we have used HOE-694, an inhibitor more selective for NHE-1 than for NHE-2. The results obtained strongly suggest that NHE-1 and NHE-2 are expressed in the basolateral membrane but that they have different roles: NHE-1 is responsible for pHi recovery after an acid load and NHE-2 is mainly involved in steady-state pHi and cell volume regulation.  相似文献   

11.
Upon stimulation, the gastric parietal cell secretes a large quantity of isotonic HCl across its apical membrane which must be accompanied by the generation of base in the cytosol. The ability of this cell type to regulate cytosolic pH (pHi) was examined as a function of stimulation of acid secretion by histamine or forskolin. The pHi was estimated from the change of fluorescence of the trapped dye, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein-bis-carboxyethylcarbo xy fluorescein in a purified cell suspension of rabbit parietal cells. Stimulation of the cell suspension raised pHi by an average of 0.13 +/- 0.038 pH units. The H+,K+-ATPase inhibitor, SCH28080 (2-methyl-8-[phenyl-methoxy]-imidazo-(1,2)-pyridine-3-acetonitrile) had only a small effect on the increase of pHi, therefore, was largely independent of H+,K+-ATPase activity. In Na+-free medium, where Na+/H+ exchange would be absent, the rise of pHi was only 0.03 pH units. This increase was blocked by SCH28080, showing that this small increment was the result of acid secretion. In Na+-containing medium, 90% of the increase was inhibited by an inhibitor of Na+/H+ exchange, dimethyl amiloride (DMA). This compound also blocked changes in pHi due to changes in extracellular Na+. Accordingly, most of the change in pHi upon stimulation of acid secretion by histamine and forskolin is due to activation of Na+/H+ exchange in the parietal cell basal-lateral membrane. The addition of DMA to stimulated, but not resting cells, gave a rapid acidification that was blocked by inhibition of anion exchange by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), showing that anion exchange was also activated by stimulation. In single cell recording, canalicular and cytosolic pH were monitored simultaneously using 9-amino acridine and dimethyl carboxyfluorescein, respectively. Cytosolic alkalinization correlated with acid accumulation in the secretory canaliculus until a set point was reached. Thereafter, acidification continued without further change in pHi. To determine the role of Na+/H+ and Cl-/HCO3- exchange in acid secretion, Cl(-)-depleted cells were suspended in medium containing 40 mM Cl-. DMA and DIDS each blocked acid secretion by about 40%, but in combination, acid secretion was blocked by more than 90%. Thus, basal-lateral Na+/H+ and Cl-/HCO3- exchange activities are necessary for acid secretion across the apical membrane of the parietal cell.  相似文献   

12.
Na+/H+ exchangers (NHE) are ubiquitous transporters participating in regulation of cell volume and pH. Cell shrinkage, acidification, and growth factors activate NHE by increasing its sensitivity to intracellular H+ concentration. In this study, the kinetics were studied in dog red blood cells of Na+ influx through NHE as a function of external Na+ concentration ([Na+]o). In cells in isotonic media, [Na+]o inhibited Na+ influx >40 mM. Osmotic shrinkage activated NHE by reducing this inhibition. In cells in isotonic media + 120 mM sucrose, there was no inhibition, and influx was a hyperbolic function of [Na+]o. The kinetics of Na+-inhibited Na+ influx were analyzed at various extents of osmotic shrinkage. The curves for inhibited Na+ fluxes were sigmoid, indicating more than one Na+ inhibitory site associated with each transporter. Shrinkage significantly increased the Na+ concentration at half-maximal velocity of Na+-inhibited Na+ influx, the mechanism by which shrinkage activates NHE. erythrocytes; cell volume regulation; amiloride; kinetics of sodium ion influx  相似文献   

13.
A novel Cl-dependent Na/H exchange (Cl-NHE) has been identified in apical membranes of crypt cells of rat distal colon. The presence of Cl is required for both outward proton gradient-driven Na uptake in apical membrane vesicles (AMV) and Na-dependent intracellular pH recovery from an acid load in the crypt gland. The present study establishes that Cl-dependent outward proton gradient-driven (22)Na uptake 1) is saturated with increasing extravesicular Na concentration with a Michaelis constant (K(m)) for Na of approximately 24.2 mM; 2) is saturated with increasing outward H concentration gradient with a hyperbolic curve and a K(m) for H of approximately 1.5 microM; 3) is inhibited by the Na/H exchange (NHE) inhibitors amiloride, ethylisopropylamiloride, and HOE-694 with an inhibitory constant (K(i)) of approximately 480.2, 1.1, and 9.5 microM, respectively; 4) is inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, an anion exchange inhibitor at low concentration and a Cl channel blocker at high dose, and by 5-nitro-2(3-phenylpropylamino)benzoic acid, a Cl channel blocker, with a K(i) of approximately 280.6 and 18.3 microM, respectively; and 5) substantially stimulated Cl-NHE activity by dietary Na depletion, which increases plasma aldosterone and inhibits NHE in surface cell AMV. These properties of Cl-NHE are distinct from those of NHE1, NHE2, and NHE3 isoforms that are present in colonic epithelial cells; thus these results suggest that the colonic crypt cell Cl-NHE is a novel NHE isoform.  相似文献   

14.
Earlier studies by our laboratory have suggested a relationship between an amiloride-sensitive Na+-H+ exchange process and the physical state of the lipids of rat colonic brush-border membrane vesicles. To further assess this possible relationship, a series of experiments were performed to examine the effect of dexamethasone administration (100 micrograms/100 g body wt. per day) subcutaneously for 4 days on Na+-H+ exchange, lipid composition and lipid fluidity of rat distal colonic brush-border membrane vesicles. The results of these studies demonstrate that dexamethasone treatment significantly: (1) increased the Vmax of the Na+-H+ exchange without altering the Km for sodium of this exchange process, utilizing the fluorescent pH-sensitive dye, acridine orange. 22Na flux experiments also demonstrated an increase in amiloride-sensitive proton-stimulated sodium influx across dexamethasone-treated brush-border membrane vesicles; (2) increased the lipid fluidity of treated-membrane vesicles compared to their control counterparts, as assessed by steady-state fluorescence polarization techniques using three different lipid-soluble fluorophores; and (3) increased the phospholipid content of treated-membrane vesicles thereby, decreasing the cholesterol/phospholipid molar ratio of treated compared to control preparations. This data, therefore, demonstrates that dexamethasone administration can modulate amiloride-sensitive Na+-H+ exchange in rat colonic distal brush-border membrane vesicles. Moreover, it adds support to the contention that a direct relationship exists between Na+-H+ exchange activity and the physical state of the lipids of rat colonic apical plasma membranes.  相似文献   

15.
The effect of the potent anticancer drug cisplatin, cis-diamminedichloroplatinum (II) (CDDP), on H+ -ATPase and Na+/H+ exchanger in rat renal brush-border membrane was examined. To measure H+ transport by vacuolar H+ -ATPase in renal brush-border membrane vesicles, we employed a detergent-dilution procedure, which can reorientate the catalytic domain of H+ -ATPase from an inward-facing configuration to outward-facing one. ATP-driven H+ pump activity decreased markedly in brush-border membrane prepared from rats two days after CDDP administration (5 mg/kg, i.p.). In addition, N-ethylmaleimide and bafilomycin A1 (inhibitors of vacuolar H+ -ATPase)-sensitive ATPase activity also decreased in these rats. The decrease in ATP-driven H+ pump activity was observed even at day 7 after the administration of CDDP. Suppression of ATP-driven H+ pump activity was also observed when brush-border membrane vesicles prepared from normal rats were pretreated with CDDP in vitro. In contrast with H+ -ATPase, the activity of Na+/H+ exchanger, which was determined by measuring acridine orange fluorescence quenching, was not affected by the administration of CDDP. These results provide new insights into CDDP-induced renal tubular dysfunctions, especially such as proximal tubular acidosis and proteinuria.  相似文献   

16.
The human cell line U937 differentiates to monocyte macrophage-like cells in response to tumour-promoting phorbol esters. This effect is attributed to activation of protein kinase C. We show here that U937 cell differentiation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) is associated with cytoplasmic alkalinization. Ethyl-isopropyl-amiloride (EIPA), a potent inhibitor of Na+/H+ exchange, blocked both cytoplasmic alkalinization and cell differentiation. Cell acidification by addition of 2-4 mM sodium propionate also blocked TPA-induced U937 cell differentiation. These results suggest that a sustained cell alkalinization mediated by activation of Na+/H+ exchange is essential for TPA-induced differentiation in U937 cells. The increase of cytoplasmic free calcium concentration ([Ca2+]i) by addition of the calcium ionophore ionomycin enhanced TPA-induced alkalinization by increasing the apparent affinity of the Na+/H+ antiporter for intracellular H+. Treatment with ionomycin also potentiated differentiation of U937 cells induced by TPA. This synergism suggests that [Ca2+]i either potentiates the activation of protein kinase C or triggers additional transducing mechanisms. The key events of this interaction occur during the first 30 min of treatment, even though cell differentiation manifests much later.  相似文献   

17.
1,2-Dimethylhydrazine, in weekly subcutaneous (s.c.) doses of 20 mg/kg body weight, produces colonic tumors in virtually 100% of rodents, with a latency period of approximately 6 months. To determine whether alterations in Na+-H+ exchange existed before the development of dimethylhydrazine-induced colon cancer, rats were given s.c. injections of this agent (20 mg/kg body wt. per per week) or diluent for 5 weeks. Animals were then killed, rat colonic brush-border membrane vesicles prepared and amiloride-sensitive sodium-stimulated proton efflux was measured and compared in control and treated-preparations. The results of these studies demonstrated that dimethylhydrazine treatment: (1) significantly increased the Vmax of this exchange without altering the Km for sodium of this exchange process, utilizing the fluorescent pH-sensitive dye, acridine orange; 22Na flux experiments also demonstrated an increase in amiloride-sensitive proton-stimulated sodium influx across treated-membrane vesicles; (2) did not appear to significantly influence Na+ permeability or proton conductance in treated-preparations compared to their control counterparts; and (3) did not significantly affect the kinetic parameters of amiloride-sensitive sodium-stimulated proton efflux in renal cortex brush-border membrane vesicles using acridine orange. This data, therefore, suggests that alterations in Na+-H+ exchange in rat colonic brush-border membranes may be involved in the malignant transformation process induced by this procarcinogen in the large intestine.  相似文献   

18.
The effect of a transmembrane pH gradient on the ouabain, bumetanide, and phloretin resistant H+ efflux was studied in rabbit erythrocytes. Proton equilibration was reduced by the use of DIDS (125 microM) and acetazolamide (1 mM). H+ efflux from acid loaded erythrocytes (pHi = 6.1) was measured in a K+ (145 mM) medium, pH0 = 8.0, in the presence and absence of 60 microM 5,N,N-dimethyl-amiloride (DMA). The H+ efflux rate in a K+-containing medium was 116.38 +/- 4.5 mmol/l cell X hr. Substitution of Nao+ for Ko+ strongly stimulated H+ efflux to 177.89 +/- 7.9 mmol/l cell X hr. The transtimulation of H+ efflux by Nao+ was completely abolished by DMA falling to values not different from controls with an ID50 of about 8.6 X 10(-7) M. The sequence of substrate selectivities for the external transport site were Na greater than greater than greater than Li greater than choline, Cs, K, and Glucamine. The transport system has no specific anion requirement, but is inhibited by NO3-. The DMA sensitive H+ efflux was a saturable function of [Na+]o, with an apparent Km and Vmax of about 14.75 +/- 1.99 mM and 85.37 +/- 7.68 mmol/l cell X hr, respectively. However, the Nao+-dependent and DMA-sensitive H+ efflux was sigmoidally activated by [H+]i, suggesting that Hi+ interacts at both transport and modifier sites. An outwardly directed H+ gradient (pHi 6.1, pH = 8.0) also promoted DMA sensitive Na+ entry (61.2 +/- 3.0 mmol/l cell X hr) which was abolished when pHo was reduced to 6.0. The data is therefore consistent with the presence of a Na+/H+ exchange system in rabbit erythrocytes.  相似文献   

19.
Using the fluorescent probe, BCECF, the changes in intracellular pH (pHi) in rat peritoneal mast cells were studied. alpha-Thrombin (0.1 nM) induced biphasic changes in pHi which consisted in a temporary decrease in pH with its subsequent steady increase due to the Na/H exchange activation which was inhibited by EIPA and controlled by extracellular Na+. The biphasic changes in pHi induced by DIP-alpha-thrombin (0.1 pM-1 nM), a catalytically inactive form with an intact recognition site, were similar to those of alpha-thrombin, whereas beta/gamma-thrombin (10-1000 pM), a catalytically active form characterized by structural disturbances in the recognition site, was able to induce only the initial phase of acidification. The thrombin recognition site modulators, alpha 1-thymosin and heparin, blocked the ability of the enzyme to induce the alkalinization of pHi. Nigericin stimulated the Na/H-exchange in mast cells. The rate of the Na/H-exchange activation determined with nigericin, decreased with an increase in the alpha-thrombin dose from 0.1 pM up to 10 nM. Activation of protein kinase C (PKC) in mast cells by PMA used at 1 nM and 10 nM led to the alkalinization of the cytoplasm as a result of the Na/H-exchange activation blocked by EIPA. The PKC inhibitor, H-7, suppressed the pHi increase induced by both PMA and alpha-thrombin. The alpha-thrombin-induced acidification of the cytoplasm was completely blocked by SITS in Ca(2+)-free media, whereas in media with Ca2+ SITS inhibited the pHi decline. Acidification of the cytoplasm by thrombin seems to be due to both Ca2+ influx and activation of Cl- fluxes. It is concluded that the observed activation of the Na/H-exchange by thrombin is induced by a cascade of intracellular reactions involving PKC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号