首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the genus Homo, the most encephalized taxa (Neandertals and modern humans) show relatively wider frontal lobes than either Homo erectus or australopithecines. The present analysis considers whether these changes are associated with a single size-based or allometric pattern (positive allometry of the width of the anterior endocranial fossa) or with a more specific and non-allometric pattern. The relationship between hemispheric length, maximum endocranial width, and frontal width at Broca's area was investigated in extant and extinct humans. Our results do not support positive allometry for the frontal lobe's width in relation to the main endocranial diameters within modern humans (Homo sapiens). Also, the correlation between frontal width and hemispheric length is lower than the correlation between frontal width and parieto-temporal width. When compared with the australopithecines, the genus Homo could have experienced a non-allometric widening of the brain at the temporo-parietal areas, which is most evident in Neandertals. Modern humans and Neandertals also display a non-allometric widening of the anterior endocranial fossa at the Broca's cap when compared with early hominids, again more prominent in the latter group. Taking into account the contrast between the intra-specific patterns and the between-species differences, the relative widening of the anterior fossa can be interpreted as a definite evolutionary character instead of a passive consequence of brain size increase. This expansion is most likely associated with correspondent increments of the underlying neural mass, or at least with a geometrical reallocation of the frontal cortical volumes. Although different structural changes of the cranial architecture can be related to such variations, the widening of the frontal areas is nonetheless particularly interesting when some neural functions (like language or working memory, decision processing, etc.) and related fronto-parietal cortico-cortical connections are taken into account.  相似文献   

2.
This is the first paper of the series devoted to the microscopic anatomy and fine structure of the skeleton-heart-kidney complex in the acorn worm Saccoglossus mereschkowskii Wagner 1885. The skeleton of S. mereschkowskii consists of the unpaired anterior plate (lamina imparis) and two posterior horns (corni). The anterior plate bears a pair of lateral wings (alae laterales), the midventral keel (carina ventralis), the central fossa (fossa centralis) with the bordering ridge (crista circumflexa fossae centralis), two symmetrical supporting saucers (subiculi), and the conical rostrum (rostrum). The skeleton is an accretion (overgrowth) of the basal lamina between the epidermis and the endodermal epithelium of the buccal diverticulum (in the anterior part) and between the endodermal epithelia of the buccal diverticulum and the gut (in the posterior part) and consists of collagen fibers, mostly longitudinal. In all representatives of the Enteropneusta studied to date, the skeleton is a wishbone-like structure with the unpaired anterior plate and paired posterior horns, but its components widely vary in shape between species. In the family Harrimaniidae, the horns are long, and the anterior plate is rod-shaped. In the Ptychoderidae, the horns are short, and the anterior plate is rectangular. In the Spengelidae, the skeleton has an intermediate shape.  相似文献   

3.
Paleoneurology concerns the study and analysis of fossil endocasts. Together with cranial capacity and discrete anatomical features, shape can be analysed to consider the spatial relationships between structures and to investigate the endocranial structural system. A sample of endocasts from fossil specimens of the genus Homo has been analysed using traditional metrics and 2D geometric morphometrics based on lateral projections of endocranial shape. The maximum and frontal widths show a size-related pattern of variation shared by all the taxa considered. Furthermore, as cranial capacity increases in the non-modern morphotypes there is a general endocranial vertical stretching (mainly centred at the anterior ascending circumvolution) with flattening and relative shortening of the parietal areas. This pattern could have involved some structural stress between brain development and vault bones at the parietal midsagittal profile in the heavy encephalised Neandertals. In contrast, modern humans show a species-specific neomorphic hypertrophy of the parietal volumes, leading to a dorsal growth and ventral flexion (convolution) and consequent globularity of the whole structure. Brain tensors such as the falx cerebri have been hypothesised to represent one of the main physical constraints on morphogenetic trajectories, with additional influences from cranial base structures. The neurofunctional inferences discussed here stress the role of the parietal areas in the visuo-spatial coordination and integration, which can be involved in higher cerebral functions and related to conceptual thinking.  相似文献   

4.
Twelve anencephalic and four normal fetuses 26 to 40 weeks gestational age were compared by anatomic, radiographic and histologic methods in order to gain information concerning morphogenesis. In the anencephalics, alterations located within the body of the sphenoid bone led to a reduced cranial floor angle and a more vertical clivus. The reduced lateral extension of the lesser and greater wings of the sphenoid constricted the anterior and middle cranial fossae respectively. The posterior cranial fossa tended to have an increased transverse dimension related to the supraoccipital and exoccipital bone orientation. The increased anterior and inferior position of the lateral end of the petrous temporal ridge was positively correlated with the degree of dorsal schisis in the anencephalics. Alterations in the size, form, or duration of the neural functional matrix are suggested as the cause of changes in the cranial floor.  相似文献   

5.
Studies have reported an empirical link between the size of the semicircular canals and locomotor agility across adult primates. In this paper, we investigate the possibility that this relationship does not follow from the function of the semicircular canals to sense head rotations, but rather reflects spatial constraints imposed by the subarcuate fossa. The latter sits among the three canals and contains the petrosal lobule of the cerebellar paraflocculus, a structure involved in neural processing of locomotion-related eye movements. Hence, it is feasible that agility-related variations of lobule and fossa size affect the arc size of the surrounding semicircular canals. The present study tests such hypothetical correlations by evaluating canal size, fossa size, and agility among extant adult primates. Phylogenetically informed multivariate regression analyses show that, after controlling for body mass, the size of the subarcuate fossa has a significant positive effect on the overall size of the anterior canal and the width of the posterior canal. Multivariate regressions involving the height of the posterior canal and overall size of the lateral canal are not significant. Further bivariate analyses confirm that fossa size is unlikely to play a role in the previously reported link between agility and the size of the posterior and lateral canals. However, fossa size, especially its opening though the arc of the anterior canal, cannot be excluded as a factor that influences the size of the anterior canal more than agility. The findings show that the most reliable functional signals pertaining to locomotion in species that possess a patent subarcuate fossa are likely to come from the lateral canal and are least likely to come from the anterior canal.  相似文献   

6.
Computer generated three-dimensional stereolithographic models of middle Pleistocene skulls from Petralona and Broken Hill are described and compared. The anterior cranial fossae of these models are also compared with that of another middle Pleistocene skull, Arago 21. Stereolithographic modelling reproduces not only the outer surfaces of skulls, but also features within the substance of the bones, and details of the internal braincase. The skulls of Petralona and, to a somewhat lesser degree, Broken Hill are extremely pneumatized. Previously undescribed features associated with pneumatization are detailed, along with their possible functional significance, polarity, and potential for understanding hominid cranial variation. Petralona and Broken Hill also exhibit a dramatic suite of cerebral features that is probably related to extensive pneumatization of the skull, namely frontal lobes that are tilted and located behind rather than over the orbits, laterally flared temporal lobes, marked occipital projection, and basal location of the cerebellum. Comparison of the anterior cranial fossae of Petralona, Broken Hill, and Arago 21 suggests that external resemblance of skulls may not always correlate with endocranial similarity. We believe that stereolithographic reconstructions have the potential for helping to resolve difficult questions about the origins of Neanderthal and anatomically modern people.  相似文献   

7.
Modern humans are characterized by their large, complex, and specialized brain. Human brain evolution can be addressed through direct evidence provided by fossil hominid endocasts (i.e. paleoneurology), or through indirect evidence of extant species comparative neurology. Here we use the second approach, providing an extant comparative framework for hominid paleoneurological studies. We explore endocranial size and shape differences among great apes and humans, as well as between sexes. We virtually extracted 72 endocasts, sampling all extant great ape species and modern humans, and digitized 37 landmarks on each for 3D generalized Procrustes analysis. All species can be differentiated by their endocranial shape. Among great apes, endocranial shapes vary from short (orangutans) to long (gorillas), perhaps in relation to different facial orientations. Endocranial shape differences among African apes are partly allometric. Major endocranial traits distinguishing humans from great apes are endocranial globularity, reflecting neurological reorganization, and features linked to structural responses to posture and bipedal locomotion. Human endocasts are also characterized by posterior location of foramina rotunda relative to optic canals, which could be correlated to lesser subnasal prognathism compared to living great apes. Species with larger brains (gorillas and humans) display greater sexual dimorphism in endocranial size, while sexual dimorphism in endocranial shape is restricted to gorillas, differences between males and females being at least partly due to allometry. Our study of endocranial variations in extant great apes and humans provides a new comparative dataset for studies of fossil hominid endocasts.  相似文献   

8.
Pivotally positioned as the interface between the neurocranium and the face, the cranial base has long been recognized as a key area to our understanding of the origins of modern human skull form. Compared with other primates, modern humans have more coronally orientated petrous bones and a higher degree of basicranial flexion, resulting in a deeper and wider posterior cranial fossa. It has been argued that this derived condition results from a phylogenetic increase in the size of the brain and its subcomponents (infra- and supratentorial volumes) relative to corresponding lengths of the cranial base (posterior and anterior, respectively). The purpose of this study was to test such evolutionary hypotheses in a prenatal ontogenetic context. We measured the degree of basicranial flexion, petrous reorientation, base lengths, and endocranial volumes from high-resolution magnetic resonance images (hrMRI) of 46 human fetuses ranging from 10-29 weeks of gestation. Bivariate comparisons with age revealed a number of temporal trends during the period investigated, most notable of which were coronal rotation of the petrous bones and basicranial retroflexion (flattening). Importantly, the results reveal significant increases of relative endocranial sizes across the sample, and the hypotheses therefore predict correlated variations of cranial base flexion and petrous orientation in accordance with these increases. Statistical analyses did not yield results as predicted by the hypotheses. Thus, the propositions that base flexion and petrous reorientation are due to increases of relative endocranial sizes were not corroborated by the findings of this study, at least for the period investigated.  相似文献   

9.
Morphological diversity of 47 pygoscelid skulls was tested empirically through geometric morphometrics approach. Using 14 landmarks, shape is analyzed independently of other aspects of the body form. The shape disparity within and between the three living species of Pygoscelis is explored as well as how the structure of the skull is related to food preferences. Comparison of the three mean configurations of the species suggests that differences among groups are small relative to the variability within each group. However, some differences at the posterior portion of the braincase are indicated. Sexual dimorphism within each species is not noticeable. Comparison with a piscivorous species (Spheniscus humboldti) shows two cranial patterns: pygoscelid type with wide nasal gland depression limited by well-marked edges, shallow temporal fossae, and a poorly developed temporal nuchal crest; the second type represented by Spheniscus humboldti with laterally open nasal gland depression, deep temporal fossae, and a well-developed temporal nuchal crest.  相似文献   

10.
11.
An in vivo ferret model was used to study the association of Staphylococcus aureus with specific tissues of the nasal cavity in both control and influenza A virus-infected animals. Ferrets were inoculated intranasally with various doses of influenza A3/Hong Kong/1/68 virus. On Days 2, 5, 9 and 14, four or five virus-inoculated and two uninoculated controls were challenged intranasally with a 1-ml volume of radiolabeled S. aureus (3 mg dry wt), a clinical isolate of low passage history. Ferrets were allowed to clear the staphylococci in vivo for 60 to 90 min before sacrifice. The animals were anesthetized, exsanguinated, and decapitated, and the lower jaw was removed. The nasal fossae were exposed by dissection and turbinates from the left nasal fossa were used for virus isolation. The median septum and tissues from the right nasal fossa, which included vestibule and anterior and posterior turbinates, were harvested and processed for radioassay. The percentage of recoverable staphylococci from virus-infected ferrets (Days 2 and 5) was greater than or equal to 10-fold higher compared with controls and animals infected with suboptimal doses of virus; greater than or equal to 76% of the recoverable staphylococci, whether from controls or virus-infected animals, was associated with the anterior turbinates. Histologic examination of the anterior turbinates from virus-infected ferrets, particularly on Days 2 and 5 postexposure to virus, showed that the staphylococci were adhering to desquamating respiratory epithelial cells. In contrast, the anterior turbinates from control ferrets uninoculated with virus and posterior turbinates from both control and virus-infected animals showed no evidence of bacteria adhering to host cells; instead, the staphylococci were found in association with the mucus gel layer of respiratory mucosa. Examination of vestibular tissue showed staphylococci in association with cells of the stratum granulosum in both virus-infected and control animals. Results of this study suggest that the early events of S. aureus interaction with different sites of ferret nasal tissues are effected by different mechanisms, and that the interaction is significantly enhanced by virus-infection.  相似文献   

12.
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species’ responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species’ distributions highlights the need to include river flow data in climate change impact models of species’ distributions.  相似文献   

13.
M Cioffi 《Tissue & cell》1979,11(3):467-479
Light and electron microscopic examination of the midgut of Manduca sexta has shown that the organization of this tissue is more complex than was originally believed. The midgut can be divided into anterior, middle and posterior regions on the basis of the pattern of folding of the epithelial sheet, and variations in the structure of goblet and columnar cells which occur along its length. The columnar cells show gradual structural changes form the anterior to the posterior end of the midgut. For example, the microvilli in the anterior region form a dense, interconnecting network from which vesicles break off. This organization becomes less obvious through the middle region, until by the posterior region each microvillus is unconnected to adjacent microvilli along its entire length and vesicles are no longer produced. Two distinct types of goblet cells are found. In the anterior and middle regions the goblet cells have a large basally located cavity, but in the posterior region the cavity occupies only the apical half of the cell. In both cases the cavity is formed by invagination of the apical membrane, which is studded with small particles implicated in active ion transport. In the anterior and middle regions this membrane is closely associated with mitochondria, but not in the posterior region. The significance of the observed structural differences is discussed in relation to active ion transport.  相似文献   

14.
Differences in scapular morphology between modern humans and the African and lesser apes are associated with the distinct locomotor habits of these groups. However, several traits, particularly aspects of the supraspinous fossa, are convergent between Homo and Pongo—an unexpected result given their divergent locomotor habits. Many morphological assessments of the scapula rely on the limited number of static landmarks available, and traditional approaches like these tend to oversimplify scapular shape. Here, we present the results of two geometric morphometric (GM) analyses of hominoid supraspinous fossa shape—one employing five homologous landmarks and another with 83 sliding semilandmarks—alongside those of traditional methods to evaluate if three-dimensional considerations of fossa shape afford more comprehensive insights into scapular shape and functional morphology. Traditional measures aligned Pongo and Homo with narrow and transversely oriented supraspinous fossae, whereas African ape and Hylobates fossae are broader and more obliquely situated. However, our GM results highlight that much of the convergence between Homo and Pongo is reflective of their more medially positioned superior angles. These approaches offered a more complete assessment of supraspinous shape and revealed that the Homo fossa, with an intermediate superior angle position and moderate superoinferior expansion, is actually reminiscent of the African ape shape. Additionally, both Pongo and Hylobates were shown to have more compressed fossae, something that has not previously been identified through traditional analyses. Thus, the total morphological pattern of the Pongo supraspinous fossa is unique among hominoids, and possibly indicative of its distinctive locomotor habits. Am J Phys Anthropol 156:498–510, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Anthropogenic changes in landscape structure, such as habitat loss, habitat subdivision and edge increase, can strongly affect the performance of plants, leading to population declines and extinctions. Many studies to date have focused on single characteristics of landscape structure or single life‐cycle phases, but they poorly discern the different pathways through which landscape change influences plant population dynamics via different vital rates. In this study, we evaluated the effect of two structural characteristics (habitat quantity and edge length) on vital rates and population growth rates of a perennial forest plant (Primula vulgaris) in a historically managed landscape. Areas with higher amounts of forest habitat had higher population growth rates due to higher recruitment, survival and growth of seedlings, while increased forest edge length was positively associated with population growth rates primarily due to a higher survival of reproductive individuals. Effects were stronger during the first of the two transition intervals studied. The results demonstrate that changes in different landscape structural characteristics may result in opposing effects acting via different vital rates, and highlight the need for integrative analyses to evaluate the effects of rapid landscape transformation on the current and long term plant population dynamics.  相似文献   

16.
Reliable brain volume measurements are crucial in identifying factors that influence the course of brain evolution. Here, we demonstrate the potential for using virtual endocasts (VEs) to examine inter- and intraspecific variation in brain volume in members of the family Hyaenidae. Total endocranial volume (adjusted for body size) and anterior cerebrum volume (adjusted for endocranial volume) were greater in the spotted hyena, the most gregarious of the species, than in the other hyaenids, all of which are less gregarious. An intraspecific analysis of spotted hyenas revealed that anterior cerebrum volume is significantly larger in males than females, although total endocranial volume does not differ between the sexes. Greater total endocranial and anterior cerebrum volume of spotted hyenas, relative to those of other hyena species, may be related to increased neural processing mediating cognitive demands associated with a complex social life. These data demonstrate that computed tomographic (CT) technology can be used to create VEs in species for which actual brains are rare or unavailable, and suggest that this approach can be applied systematically to explore intra- and interspecies brain variations in studies of brain evolution.  相似文献   

17.
大黄鱼精子的超微结构   总被引:43,自引:1,他引:43  
尤永隆  林丹军 《动物学报》1997,43(2):119-126
大黄鱼的精子由头产和尾部两部分组成。头部结构较为独特,其腹侧有一较大的细胞核,背部有中心粒复合体。头部的后端是袖套。细胞核的腹面稍向外突出背面则稍向内凹。细胞核中的染以质浓缩成致密的团块状。团块状的染色质之间分布着松散的纤维状染色质。植入窝位于细胞核的背部表面,由细胞核背面向内凹陷而成,呈一沟状,其走向与精子的长轴平行。  相似文献   

18.
《Journal of morphology》2017,278(10):1312-1320
Modern humans have evolved bulging parietal areas and large, projecting temporal lobes. Both changes, largely due to a longitudinal expansion of these cranial and cerebral elements, were hypothesized to be the result of brain evolution and cognitive variations. Nonetheless, the independence of these two morphological characters has not been evaluated. Because of structural and functional integration among cranial elements, changes in the position of the temporal poles can be a secondary consequence of parietal bulging and reorientation of the head axis. In this study, we use geometric morphometrics to test the correlation between parietal shape and the morphology of the endocranial base in a sample of adult modern humans. Our results suggest that parietal proportions show no correlation with the relative position of the temporal poles within the spatial organization of the endocranial base. The vault and endocranial base are likely to be involved in distinct morphogenetic processes, with scarce or no integration between these two districts. Therefore, the current evidence rejects the hypothesis of reciprocal morphological influences between parietal and temporal morphology, suggesting that evolutionary spatial changes in these two areas may have been independent. However, parietal bulging exerts a visible effect on the rotation of the cranial base, influencing head position and orientation. This change can have had a major relevance in the reorganization of the head functional axis.  相似文献   

19.
20.
Three-dimensionally preserved and chemically prepared skulls and natural casts of representatives of the families Benthosuchidae, Melosauridae, and Capitosauridae yield data on the structure of the ethmoidal endocranium, i. e. of those nasal cranial structures that consisted originally of cartilage. This study demonstrates that the ethmoidal endocranium was principally a dorsoventrally compressed plate, pierced by a broad and oblique canal which communicated anteriorly with the outer dorsal surface by the fenestra endonarina and posteriorly with the mouth cavity by the fenestra endochoanalis(seu foris). The canal was very short, and housed the olfactory organ. The ethmoidal endocranium was connected with the palatoquadrate by the commissura quadratocranialis anterior; there was no lateral ethmoidal commissure, however, in older individuals the anterior section of the palatoquadrate might also contact the postchoanal part of the nasal endocranial skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号