共查询到20条相似文献,搜索用时 15 毫秒
1.
O'Neill EE Brock CJ von Kriegsheim AF Pearce AC Dwek RA Watson SP Hebestreit HF 《Proteomics》2002,2(3):288-305
Platelets exert a crucial function in haemostasis, wound repair, and the formation of vascular plugs, underlying thrombotic diseases such as stroke and myocardial infarction. Analysis of platelet biochemistry is largely dependent on protein analysis as platelets are anucleated cells providing little analytical target for DNA or RNA based strategies. Here we present data from our analysis of the human platelet proteome, the entire set of proteins building a platelet at a given point in time. Proteins were separated by two-dimensional electrophoresis (2-DE) using broad and narrow range pH gradients in the isoelectric focusing step. Consequently, a high-resolution 2-DE proteome map has been generated that comprises approximately 2300 different protein features. From the 536 protein features detected in the 4-5 pI range 284 features were identified by electrospray ionisation time of flight tandem mass spectrometry. These 284 proteins originate from 123 different open reading frames. This includes the five human proteins KIAA0193, KIAA0573, KIAA0830, WUGSC:H_DJ0777O23 protein, and cytokine receptor related protein 4, all isolated for the first time. The data are discussed with regard to proteome characteristics, protein function, and the high prevalence of signalling molecules. This study contributes to a more thorough and holistic understanding of platelet biology, helping to build the basis for future identification of new drug targets and therapeutic strategies. 相似文献
2.
3.
Purified cauliflower (Brassica oleracea var. botrytis) mitochondrial proteins fractionated into soluble, membrane, integral membrane and peripheral membrane samples were analyzed
by 2D- PAGE (isoelectric focusing/ SDS polyacrylamide gel electrophoresis). 2D gels patterns were compared using the Imager
Master 2D Elite software. 561 silver stained protein spots were resolved after electrophoresis under standard conditions of
a whole protein extract. In the soluble fraction a prevalent number of more intense protein spots was observed. The cauliflower
protein 2D patterns resembled Arabidopsis thaliana 2D patterns. The two protein spots selected which occupied a similar isoelectric point positions on both gels represented
the same proteins as revealed by ESI-MS analysis of cauliflower proteins. The third selected spot belongs to unidentified
proteins. The comparative analysis of mitochondrial suborganellar fractions proved the usefulness of this approach. 相似文献
4.
Prokisch H Scharfe C Camp DG Xiao W David L Andreoli C Monroe ME Moore RJ Gritsenko MA Kozany C Hixson KK Mottaz HM Zischka H Ueffing M Herman ZS Davis RW Meitinger T Oefner PJ Smith RD Steinmetz LM 《PLoS biology》2004,2(6):e160
In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans. 相似文献
5.
Aswini K. Panigrahi Yuko Ogata Alena Zíková Atashi Anupama Rachel A. Dalley Nathalie Acestor Peter J. Myler Kenneth D. Stuart Dr. 《Proteomics》2009,9(2):434-450
The composition of the large, single, mitochondrion (mt) of Trypanosoma brucei was characterized by MS (2‐D LC‐MS/MS and gel‐LC‐MS/MS) analyses. A total of 2897 proteins representing a substantial proportion of procyclic form cellular proteome were identified, which confirmed the validity of the vast majority of gene predictions. The data also showed that the genes annotated as hypothetical (species specific) were overpredicted and that virtually all genes annotated as hypothetical, unlikely are not expressed. By comparing the MS data with genome sequence, 40 genes were identified that were not previously predicted. The data are placed in a publicly available web‐based database (www.TrypsProteome.org). The total mitochondrial proteome is estimated at 1008 proteins, with 401, 196, and 283 assigned to the mt with high, moderate, and lower confidence, respectively. The remaining mitochondrial proteins were estimated by statistical methods although individual assignments could not be made. The identified proteins have predicted roles in macromolecular, metabolic, energy generating, and transport processes providing a comprehensive profile of the protein content and function of the T. brucei mt. 相似文献
6.
Mitochondria are eukaryotic organelles that originated from a single bacterial endosymbiosis some 2 billion years ago. The transition from the ancestral endosymbiont to the modern mitochondrion has been accompanied by major changes in its protein content, the so-called proteome. These changes included complete loss of some bacterial pathways, amelioration of others and gain of completely new complexes of eukaryotic origin such as the ATP/ADP translocase and most of the mitochondrial protein import machinery. This renewal of proteins has been so extensive that only 14-16% of modern mitochondrial proteome has an origin that can be traced back to the bacterial endosymbiont. The rest consists of proteins of diverse origin that were eventually recruited to function in the organelle. This shaping of the proteome content reflects the transformation of mitochondria into a highly specialized organelle that, besides ATP production, comprises a variety of functions within the eukaryotic metabolism. Here we review recent advances in the fields of comparative genomics and proteomics that are throwing light on the origin and evolution of the mitochondrial proteome. 相似文献
7.
《Expert review of proteomics》2013,10(4):541-551
Mitochondria are essential organelles for cellular homeostasis. A variety of pathologies including cancer, myopathies, diabetes, obesity, aging and neurodegenerative diseases are linked to mitochondrial dysfunction. Therefore, mapping the different components of mitochondria is of particular interest to gain further understanding of such diseases. In recent years, proteomics-based approaches have been developed in attempts to determine the complete set of mitochondrial proteins in yeast, plants and mammals. In addition, proteomics-based methods have been applied not only to the analysis of protein function in the organelle, but also to identify biomarkers for diagnosis and therapeutic targets of specific pathologies associated with mitochondria. Altogether, it is becoming clear that proteomics is a powerful tool not only to identify currently unknown components of the mitochondrion, but also to study the different roles of the organelle in cellular homeostasis. 相似文献
8.
Mitochondria are essential organelles for cellular homeostasis. A variety of pathologies including cancer, myopathies, diabetes, obesity, aging and neurodegenerative diseases are linked to mitochondrial dysfunction. Therefore, mapping the different components of mitochondria is of particular interest to gain further understanding of such diseases. In recent years, proteomics-based approaches have been developed in attempts to determine the complete set of mitochondrial proteins in yeast, plants and mammals. In addition, proteomics-based methods have been applied not only to the analysis of protein function in the organelle, but also to identify biomarkers for diagnosis and therapeutic targets of specific pathologies associated with mitochondria. Altogether, it is becoming clear that proteomics is a powerful tool not only to identify currently unknown components of the mitochondrion, but also to study the different roles of the organelle in cellular homeostasis. 相似文献
9.
Fink JL Karunaratne S Mittal A Gardiner DM Hamilton N Mahony D Kai C Suzuki H Hayashizaki Y Teasdale RD 《Genome biology》2008,9(1):R15-8
Background
The nucleus is a complex cellular organelle and accurately defining its protein content is essential before any systematic characterization can be considered.Results
We report direct evidence for 2,568 mammalian proteins within the nuclear proteome: the nuclear subcellular localization of 1,529 proteins based on a high-throughput subcellular localization protocol of full-length proteins and an additional 1,039 proteins for which clear experimental evidence is documented in published literature. This is direct evidence that the nuclear proteome consists of at least 14% of the entire proteome. This dataset was used to evaluate computational approaches designed to identify additional nuclear proteins.Conclusion
This represents direct experimental evidence that the nuclear proteome consists of at least 14% of the entire proteome. This high-quality nuclear proteome dataset was used to evaluate computational approaches designed to identify additional nuclear proteins. Based on this analysis, researchers can determine the stringency and types of lines of evidence they consider to infer the size and complement of the nuclear proteome. 相似文献10.
New protein sequences are deposited in databases at an accelerating pace; however, many of these are homologous to known proteins and could be considered redundant. If all historical releases of the protein database are analysed using the original sequence-clustering procedure described here, the fraction of newly sequenced proteins that are redundant is increasing. We interpret this as an indication that the sequencing of the Earth's proteome--the complete set of proteins on Earth--is approaching completion. We estimate the approximate size of the Earth's proteome to be 5 million sequences, most of which will be identified during the next 5 years. As the Earth's proteome nears completion, cluster analysis of the protein database will become essential to identify under-explored taxa to which future sequencing efforts should be directed and to focus research on protein families without experimental characterization. 相似文献
11.
Delseny M 《Current opinion in plant biology》2003,6(2):101-105
Several more- or less-elaborated rice genome sequences have been produced recently using different strategies. It has become possible to compare them and to unravel the major features of the rice genome in terms of nucleotide composition, repeats, gene content and variability. It has also become possible to compare the rice and Arabidopsis genomes and to evaluate rice as a model genome. 相似文献
12.
Towards royal jelly proteome 总被引:4,自引:0,他引:4
Scarselli R Donadio E Giuffrida MG Fortunato D Conti A Balestreri E Felicioli R Pinzauti M Sabatini AG Felicioli A 《Proteomics》2005,5(3):769-776
13.
14.
《Cell cycle (Georgetown, Tex.)》2013,12(24):4007-4008
Comment on: Hao HX, et al. Science 2009; 325:1139-42. 相似文献
15.
Mosaic origin of the mitochondrial proteome 总被引:1,自引:0,他引:1
Although the origin of mitochondria from the endosymbiosis of an α-proteobacterium is well established, the nature of the host cell, the metabolic complexity of the endosymbiont and the subsequent evolution of the proto-mitochondrion into all its current appearances are still the subject of discovery and sometimes debate. Here we review what has been inferred about the original composition and subsequent evolution of the mitochondrial proteome and essential mitochondrial systems. The evolutionary mosaic that currently constitutes mitochondrial proteomes contains (i) endosymbiotic proteins (15-45%), (ii) proteins without detectable orthologs outside the eukaryotic lineage (40%), and (iii) proteins that are derived from non-proteobacterial Bacteria, Bacteriophages and Archaea (15%, specifically multiple tRNA-modification proteins). Protein complexes are of endosymbiotic origin, but have greatly expanded with novel eukaryotic proteins; in contrast to mitochondrial enzymes that are both of proteobacterial and non-proteobacterial origin. This disparity is consistent with the complexity hypothesis, which argues that proteins that are a part of large, multi-subunit complexes are unlikely to undergo horizontal gene transfer. We observe that they neither change their subcellular compartments in the course of evolution, even when their genes do. 相似文献
16.
The technique of proteome analysis using 2-DE has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this review, we describe construction of the rice proteome database, the cataloging of rice proteins, and the functional characterization of some of the proteins identified. Initially, proteins extracted from various tissues and organelles were separated by 2-DE and an image analyzer was used to construct a display or reference map of the proteins. The rice proteome database currently contains 23 reference maps based on 2-DE of proteins from different rice tissues and subcellular compartments. These reference maps comprise 13 129 rice proteins, and the amino acid sequences of 5092 of these proteins are entered in the database. Major proteins involved in growth or stress responses have been identified by using a proteomics approach and some of these proteins have unique functions. Furthermore, initial work has also begun on analyzing the phosphoproteome and protein-protein interactions in rice. The information obtained from the rice proteome database will aid in the molecular cloning of rice genes and in predicting the function of unknown proteins. 相似文献
17.
The plant mitochondrial proteome 总被引:2,自引:0,他引:2
The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid chromatography linked on-line with tandem mass spectrometry, have identified >400 mitochondrial proteins, including subunits of mitochondrial respiratory complexes, supercomplexes, phosphorylated proteins and oxidized proteins. The results also highlight a range of new mitochondrial proteins, new mitochondrial functions and possible new mechanisms for regulating mitochondrial metabolism. More than 70 identified proteins in Arabidopsis mitochondrial samples lack similarity to any protein of known function. In some cases, unknown proteins were found to form part of protein complexes, which allows a functional context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants. 相似文献
18.
Hubálek M Hernychová L Havlasová J Kasalová I Neubauerová V Stulík J Macela A Lundqvist M Larsson P 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,787(1):149-177
The accessibility of the partial genome sequence of Francisella tularensis strain Schu 4 was the starting point for a comprehensive proteome analysis of the intracellular pathogen F. tularensis. The main goal of this study is identification of protein candidates of value for the development of diagnostics, therapeutics and vaccines. In this review, the current status of 2-DE F. tularensis database building, approaches used for identification of biologically important subsets of F. tularensis proteins, and functional and topological assignments of identified proteins using various prediction programs and database homology searches are presented. 相似文献
19.
We have combined high-resolution two-dimensional (2-D) gel electrophoresis with mass spectrometry with the aim of identifying proteins represented in the 2-D gel database of Drosophila melanogaster mitochondria. First, we purified mitochondria from third instar Drosophila larvae and constructed a high-resolution 2-D gel database containing 231 silver-stained polypeptides. Next, we carried out preparative 2-D PAGE to isolate some of the polypeptides and characterize them by MALDI-TOF analysis. Using this strategy, we identified 66 mitochondrial spots in the database, and in each case confirmed their identity by MALDI-TOF/TOF analysis. In addition, we generated antibodies against two of the mitochondrial proteins as tools for characterizing the organelle. 相似文献
20.
Characterization of the human heart mitochondrial proteome 总被引:25,自引:0,他引:25
Taylor SW Fahy E Zhang B Glenn GM Warnock DE Wiley S Murphy AN Gaucher SP Capaldi RA Gibson BW Ghosh SS 《Nature biotechnology》2003,21(3):281-286
To gain a better understanding of the critical role of mitochondria in cell function, we have compiled an extensive catalogue of the mitochondrial proteome using highly purified mitochondria from normal human heart tissue. Sucrose gradient centrifugation was employed to partially resolve protein complexes whose individual protein components were separated by one-dimensional PAGE. Total in-gel processing and subsequent detection by mass spectrometry and rigorous bioinformatic analysis yielded a total of 615 distinct protein identifications. All protein pI values, molecular weight ranges, and hydrophobicities were represented. The coverage of the known subunits of the oxidative phosphorylation machinery within the inner mitochondrial membrane was >90%. A significant proportion of identified proteins are involved in signaling, RNA, DNA, and protein synthesis, ion transport, and lipid metabolism. The biochemical roles of 19% of the identified proteins have not been defined. This database of proteins provides a comprehensive resource for the discovery of novel mitochondrial functions and pathways. 相似文献