首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Movements of the hyobranchial apparatus in reptiles and amphibians contribute to many behaviors including feeding, lung ventilation, buccopharyngeal respiration, thermoregulation, olfaction, defense and display. In a semi-aquatic turtle, Platysternon megacephalum, x-ray video and airflow measurements from blowhole pneumotachography show no evidence that above water hyobranchial movements contribute to lung inflation, as in the buccal or gular pump of amphibians and some lizards. Instead, hyobranchial movements produce symmetrical oscillations of air into and out of the buccal cavity. The mean tidal volume of these buccal oscillations is 7.8 times smaller than the mean tidal volume of lung ventilation (combined mean for four individuals). Airflow associated with buccal oscillation occurs in the sequence of inhalation followed by exhalation, distinguishing it from lung ventilation which occurs as exhalation followed by inhalation. No fixed temporal relationship between buccal oscillation and lung ventilation was observed. Periods of ventilation often occur without buccal oscillation and buccal oscillation sometimes occurs without lung ventilation. When the two behaviors occur together, the onset of lung ventilation often interrupts buccal oscillation. The initiation of lung ventilation was found to occur in all phases of the buccal oscillation cycle, suggesting that the neural control mechanisms of the two behaviors are not coupled. The pattern of occurrence of both buccal oscillation and lung ventilation was found to vary over time with no obvious effect of activity levels.  相似文献   

2.
In the traditional view of vertebrate lung ventilation mechanisms, air-breathing fishes and amphibians breathe with a buccal pump, and amniotes breathe with an aspiration pump. According to this view, no extant animal exhibits a mechanism that is intermediate between buccal pumping and aspiration breathing; all lung ventilation is produced either by expansion and compression of the mouth cavity via the associated cranial and hyobranchial musculature (buccal pump), or by expansion of the thorax via axial musculature (aspiration pump). However, recent work has shown that amphibians exhibit an intermediate mechanism, in which axial muscles are used for exhalation and a buccal pump is used for inhalation. These findings indicate that aspiration breathing evolved in two steps: first, from pure buccal pumping to the use of axial musculature for exhalation and a buccal pump for inspiration; and second, to full aspiration breathing, in which axial muscles are used for both inhalation and exhalation. Furthermore, the traditional view also holds that buccal pump breathing was lost shortly after aspiration breathing evolved. This view is now being challenged by the discovery that several species of lizards use a buccal pump to augment costal aspiration during exercise. This result, combined with the observation that a behavior known as “buccal oscillation” is found in all amniotes except for mammals, suggests that a reappraisal of the role of buccal pumping in extant and extinct amniotes is in order.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

3.
Typhlonectes natans empty their lungs in a single extended exhalation and subsequently fill their lungs by using a series of 10-20 inspiratory buccal oscillations. These animals always use this breathing pattern, which effectively separates inspiratory and expiratory airflows, unlike most urodele and anuran amphibians that may use one to many buccal oscillations for lung inflation and typically mix expired and inspired gases. Aquatic hypoxia had no significant effect on the breathing pattern or mechanics in these animals. Aerial hypoxia stimulated ventilatory frequency and increased the number of inspiratory oscillations but had little effect on inspiratory and expiratory tidal volume. Aquatic hypercapnia elicited a large significant increase in air-breathing frequency and minute ventilation compared to the small stimulation of minute ventilation seen during aerial hypercapnia. Some animals responded to aquatic hypercapnia with a series of three or four closely spaced breaths separated by long nonventilatory periods. Overall, T. natans showed little capacity to modulate expiratory or inspiratory tidal volumes and depended heavily on changing air-breathing frequency to meet hypoxic and hypercapnic challenges. These responses are different from those of anurans or urodeles studied to date, which modulate both the number of ventilatory oscillations in lung-inflation cycles and the degree of lung inflation when challenged with peripheral or central chemoreceptor stimulation.  相似文献   

4.
The respiratory cycles of Rana and Bufo has been disputed in relation to flow patterns and to the respiratory dead-space of the buccal volume. A small tidal volume combined with a much larger buccal space motivated the "jet steam" model that predicts a coherent expired flow within the dorsal part of the buccal space. Some other studies indicate an extensive mixing of lung gas within the buccal volume. In Bufo schneideri, we measured arterial, end-tidal and intrapulmonary PCO(2) to evaluate dead-space by the Bohr equation. Dead-space was also estimated as: V(D)=(total ventilation-effective ventilation)/f(R), where total ventilation and f(R) were measured by pneumotachography, while effective ventilation was derived from the alveolar ventilation equation. These approaches were consistent with a dead space of 30-40% of tidal volume, which indicates a specific pathway for the expired lung gas.  相似文献   

5.
The purpose of this study was to explore new insights in non-linearity, hysteresis and ventilation heterogeneity of asthmatic human lungs using four-dimensional computed tomography (4D-CT) image data acquired during tidal breathing. Volumetric image data were acquired for 5 non-severe and one severe asthmatic volunteers. Besides 4D-CT image data, function residual capacity and total lung capacity image data during breath-hold were acquired for comparison with dynamic scans. Quantitative results were compared with the previously reported analysis of five healthy human lungs. Using an image registration technique, local variables such as regional ventilation and anisotropic deformation index (ADI) were estimated. Regional ventilation characteristics of non-severe asthmatic subjects were similar to those of healthy subjects, but different from the severe asthmatic subject. Lobar airflow fractions were also well correlated between static and dynamic scans (R2 > 0.84). However, local ventilation heterogeneity significantly increased during tidal breathing in both healthy and asthmatic subjects relative to that of breath-hold perhaps because of airway resistance present only in dynamic breathing. ADI was used to quantify non-linearity and hysteresis of lung motion during tidal breathing. Non-linearity was greater on inhalation than exhalation among all subjects. However, exhalation non-linearity among asthmatic subjects was greater than healthy subjects and the difference diminished during inhalation. An increase of non-linearity during exhalation in asthmatic subjects accounted for lower hysteresis relative to that of healthy ones. Thus, assessment of non-linearity differences between healthy and asthmatic lungs during exhalation may provide quantitative metrics for subject identification and outcome assessment of new interventions.  相似文献   

6.
The purpose of this study was to determine the relationship between the three-equation diffusing capacity for carbon monoxide (DLcoSB-3EQ) and lung volume and to determine how this relationship was altered when maneuvers were immediately preceded by a deep breath. DLcoSB-3EQ maneuvers were performed in nine healthy subjects either immediately after a deep breath or after tidal breathing for 10 min. The maneuvers consisted of slow inhalation of test gas from functional residual capacity to 25, 50, 75, or 100% of the inspiratory capacity and, without breath holding, slow exhalation to residual volume. After either a deep breath or tidal breathing, we found that DLcoSB-3EQ decreased nonlinearly with decreasing lung volume. At all lung volumes, DLcoSB-3EQ was significantly greater when measured after a deep breath than after tidal breathing. This effect increased as lung volume decreased, so that the greatest difference between DLcoSB-3EQ after a deep breath and that after tidal breathing occurred at the lowest lung volume. We conclude that a deep breath or spontaneous sigh has a role in reestablishing the pathway for gas exchange during tidal breathing.  相似文献   

7.
8.
Functional analysis of lung ventilation in salamanders combined with historical analysis of respiratory pumps provides new perspectives on the evolution of breathing mechanisms in vertebrates. Lung ventilation in the aquatic salamander Necturus maculosus was examined by means of cineradiography, measurement of buccal and pleuroperitoneal cavity pressures, and electromyography of hypaxial musculature. In deoxygenated water Necturus periodically rises to the surface, opens its mouth, expands its buccal cavity to draw in fresh air, exhales air from the lungs, closes its mouth, and then compresses its buccal cavity and pumps air into the lungs. Thus Necturus produces only two buccal movements per breath: one expansion and one compression. Necturus shares the use of this two-stroke buccal pump with lungfishes, frogs and other salamanders. The ubiquitous use of this system by basal sarcopterygians is evidence that a two-stroke buccal pump is the primitive lung ventilation mechanism for sarcopterygian vertebrates. In contrast, basal actinopterygian fishes use a four-stroke buccal pump. In these fishes the buccal cavity expands to fill with expired air, compresses to expel the pulmonary air, expands to fill with fresh air, and then compresses for a second time to pump air into the lungs. Whether the sarcopterygian two-stroke buccal pump and the actinopterygian four-stroke buccal pump arose independently, whether both are derived from a single, primitive osteichthyian breathing mechanism, or whether one might be the primitive pattern and the other derived, cannot be determined. Although Necturus and lungfishes both use a two-stroke buccal pump, they differ in their expiration mechanics. Unlike a lungfish (Protopterus), Necturus exhales by contracting a portion of its hypaxial trunk musculature (the m. Iransversus abdominis) to increase pleuroperitoneal pressure. The occurrence of this same expiratory mechanism in amniotes is evidence that the use of hypaxial musculature for expiration, but not for inspiration, is a primitive tetrapod feature. From this observation we hypothesize that aspiration breathing may have evolved in two stages: initially, from pure buccal pumping to the use of trunk musculature for exhalation but not for inspiration (as in Necturus); and secondarily, to the use of trunk musculature for both exhalation and inhalation by costal aspiration (as in amniotes).  相似文献   

9.
Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.  相似文献   

10.
11.
Eight anesthetized tracheostomized cats were placed in an 8.2-liter airtight chamber with the trachea connected to the exterior. Thirty-two combinations of high-frequency oscillations (HFO) (0.5-30 Hz; 25-100 ml) were delivered for 10 min each in random order into the chamber. Arterial blood gas tensions during oscillation were compared with control measurements made after 10 min of spontaneous breathing without oscillation when the mean arterial PCO2 (PaCO2) was 30.1 Torr. Ventilation due to spontaneous breathing (Vs) and oscillation (Vo) were derived from the chamber pressure trace and a pneumotachograph, respectively. As the oscillation frequency increased, oscillated tidal volume (Vo) decreased from a mean of 39 (0.5 Hz) to 3.3 ml (30 Hz) when 100 ml was delivered to the chamber. From 6-25 Hz, apnea occurred with Vo less than estimated respiratory dead space (VD); the minimum effective Vo/VD ratio was 0.37 +/- 0.05. Although Vo was maximal at 10 Hz at each oscillation volume, the lowest PaCO2 occurred at 2-6 Hz, and arterial PO2 rose as expected during hypocapnia. Above 10 Hz, PaCO2 was determined by Vo and was independent of frequency, whereas at lower frequencies, PaCO2 was related to Vo; below 6 Hz, PaCO2 varied inversely with the calculated alveolar ventilation. As oscillations became more effective, both PaCO2 and Vs fell progressively and were highly correlated; apnea occurred when PaCO2 was reduced by a mean of 4.5 Torr. Mean chamber pressure remained near zero up to 15 Hz, indicating functional residual capacity did not change. We conclude that externally applied HFO can readily maintain gas exchange in vivo, with Vo less than VD at frequencies over 2 Hz.  相似文献   

12.
In mammals, diaphragmatic contractions control inhalation while contraction of some thoracic hypaxial muscles and the transversus abdominis muscle contribute to exhalation. Additional thoracic hypaxial muscles are recruited as accessory ventilatory muscles to improve inhalation and exhalation during locomotion. However, the contribution of abdominal hypaxial muscles to resting and locomotor ventilation is little understood in mammals and loco-ventilatory integration has not been studied in small basal mammals. We show for the first time that all of the abdominal hypaxial muscles actively contribute to both resting and locomotory ventilation in mammals but in a size-dependent manner. In large opossums (Didelphis), hypaxial muscles exhibit uniform mild tonus during resting ventilation (pressurizing the gut to aid in exhalation) and shift to phasic bursts of activity during each exhalation during locomotion. Smaller opossums (Monodelphis) actively exhale by firing the abdominal hypaxial muscles at ~10 Hz at both rest and at preferred locomotor speeds. Furthermore, the large opossums entrained ventilation to limb cycling as speed increased while the small opossums entrained limb cycling to the resting ventilation rate during locomotion. Differences in these species are related to size effects on the natural frequency of the ventilatory system and increasing resting ventilation rates at small size. Large mammals, with lower resting ventilation rates, can increase ventilatory rates during locomotion, while the high resting ventilation rates of small mammals limits their ability to increase ventilation rates during locomotion. We propose that increase in mammalian body size during the Cenozoic may have been an adaptation or exaptation to overcome size effects on ventilation frequency.  相似文献   

13.
A whole-body plethysmograph was used for mice. The increase in pressure caused by each inhalation was equivalent to the increase that could be calculated to result from heating and humidification of the inhaled air. However, comprehending that a drop in temperature and humidity would cause an abrupt pressure decline during exhalation was difficult. Pressure changes in the plethysmograph were also studied with an artificial chest, modeling the respiratory mechanics, but without the "inhaled" air being heated or humidified. The "chest" consisted of a metal bellows oscillated by a stepper motor 25 to 175 times per minute. Hereby air (0.05 to 0.20 mL) moved in and out of the bellows. The air passed through a polyethylene tube, the length of which was proportional to "airway resistance" and varied from 5 to 35 cm. It was found that the pressure oscillation was affected not only by "tidal volume" of the mechanical chest but also by "respiratory rate" and by "airway resistance." We concur with previous investigators that the plethysmograph pressure reflects alveolar pressure and that fluctuations cannot be explained by changes in temperature and humidity. Accordingly, tidal volume can only be qualitatively and not quantitatively assessed.  相似文献   

14.
Summary Air ventilation in most Anabantoid species is diphasic, consisting of exhalation and inhalation. Exhalation is the release of air from the accessory breathing organs (suprabranchial chambers) through the mouth either into the water near the surface (e.g.,Ctenopoma) or directly into the atmosphere (e.g.,Osphronemus goramy). Inhalation, i.e., taking in fresh air through the mouth at the surface, immediately follows exhalation. X-ray films show (Figs. 5 and 6) that evacuation of the suprabranchial chambers during exhalation is total or nearly total. This, together with the fact that these chambers can contract at most to a very small extent, led to the conclusion that gas is replaced by water entering the chambers during exhalation and that this water is replaced by fresh air during inhalation. Further analysis of films, including conventional films showing the behavior of the opercular apparatus during air ventilation (Fig. 7), leads to a theory of a double-pumping mechanism responsible for air ventilation. This mechanism consists of the buccal apparatus and the opercular apparatus. It is suggested that both of these structures are able to act as both suction and pressure pumps, and thus air ventilation may be explained as the result of alternating activity of these two pumps.In the monophasic air ventilation characteristic of (adult)Anabas testudineus, there is no exhalation phase comparable to that of other Anabantoids. Therefore, no water enters the suprabranchial chambers, which remain filled with gas during the whole ventilation process (Fig. 10). Ventilation is limited to one phase comparable to inhalation in other Anabantoids.The structure of the accessory breathing organs (Fig. 1) and its progressive complication with growth (Fig. 4) were studied inOsphronemus goramy. The arrangement of the labyrinthine plates is in accordance with the requirements of transport of water and gas through the suprabranchial chambers. One plate (the inner plate, Fig. 1) separates these chambers into atrium, ventro-caudal, and dorso-caudal compartments, each with its own opening (valve). This organization seems essential for the transport of gas and water through the suprabranchial chambers and ensures that during exhalation, water flows into the chambers from above, so that while water is filling these chambers displaced gas can be sucked through the deep-lying pharyngeal openings into the expanding buccal cavity.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

15.
We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NFκB) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NFκB activation, as indicated by NFκB DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NFκB DNA binding after 1 h of ventilation and decreased NFκB DNA binding after 2 h of ventilation, as compared with controls. The early activation of NFκB during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NFκB activation using SN50 reversed these protective effects. NFκB activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway activation during VILI.  相似文献   

16.
In the neonatal period, respiratory distortion of the chest wall in active sleep has been reported to reduce the thoracic gas volume. In order to investigate whether the distortion influences the tidal volume, a thorough quantification of the phase differences between the movements of the chest wall and the abdominal wall and the relation of the phase differences to the ventilation was performed on fifteen newborn infants sleeping in prone position. The changes in the circumference of the chest and abdomen were measured with mercury-in-silastic strain gauges; nasal air flow was monitored with a pneumotachograph. During quiet sleep, the movements of the chest wall and the abdominal wall were congruent and regular, and the tidal volume was not dependent on the observed phase differences between them. In active sleep, the breathing movements were incongruent, the tidal volume was negatively correlated with the phase shift between the movements of the chest wall and the abdominal wall, and the mean inspiratory flow was increased. Ventilation (ml/min) did not differ between the sleep states. This study thus suggests that, in healthy newborns in active sleep, the chest wall distortion leads to a reduction of the tidal volume, but ventilation is upheld by compensatory mechanisms, i.e. increased breathing rate and increased amplitude of movements of the diaphragm.  相似文献   

17.
Chest wall distortion (inward motion of the rib cage on inspiration) has been found recently to reduce the tidal volume during active sleep in the neonatal period. To determine some of the factors that relate to the chest wall distortion and the decreased tidal volume seen in active sleep, a quantification of the phase differences between the movements of the chest wall and those of the abdominal wall, and of the relation of their phase differences to tidal volume was performed on data obtained before and during carbon dioxide stimulation in 15 newborn infants sleeping in the prone position. In quiet sleep, the breathing movements were congruent and regular, and the tidal volume and the mean inspiratory flow increased during carbon dioxide stimulation. In active sleep during exposure to carbon dioxide, the chest wall distortion decreased, the breathing movements were incongruent and the degree of the chest wall distortion was negatively correlated with the tidal volume, while the tidal volume and the mean inspiratory flow was increased. Chest wall distortion did not appear in quiet sleep and was decreased in active sleep in spite of increased ventilation during CO2 stimulation. This study favours the idea that chest wall distortion is caused by a well regulated change in neuromuscular activity and not by the strength of diaphragmatic movements overcoming the mechanical stability of the rib cage.  相似文献   

18.
A pressure plethysmograph for measuring respiratory volume in mice during exposure to virus aerosols is described. The respiratory frequency and tidal volume were measured, and from these data the minute ventilation was calculated. The mean respiratory frequency of adult, male mice was 255 per min; the mean tidal volume of 0.18 ml was inversely related to respiratory frequency. The standardized mean minute ventilation rate was 1.46 ml per g of body weight. The respiratory frequency and tidal volume of CD-1 and HA/ICR strains of mice of the same age were similar. The respiratory retention rate for a 2.7-mum aerosol of vesicular stomatitis virus was 41%, and 58% of the virus retained was found in the trachea and lung.  相似文献   

19.
Mechanical ventilation has been demonstrated to exacerbate lung injury, and a sufficiently high tidal volume can induce injury in otherwise healthy lungs. However, it remains controversial whether injurious ventilation per se, without preceding lung injury, can initiate cytokine-mediated pulmonary inflammation. To address this, we developed an in vivo mouse model of acute lung injury produced by high tidal volume (Vt) ventilation. Anesthetized C57BL6 mice were ventilated at high Vt (34.5 +/- 2.9 ml/kg, mean +/- SD) for a duration of 156 +/- 17 min until mean blood pressure fell below 45 mmHg (series 1); high Vt for 120 min (series 2); or low Vt (8.8 +/- 0.5 ml/kg) for 120 or 180 min (series 3). High Vt produced progressive lung injury with a decrease in respiratory system compliance, increase in protein concentration in lung lavage fluid, and lung pathology showing hyaline membrane formation. High-Vt ventilation was associated with increased TNF-alpha in lung lavage fluid at the early stage of injury (series 2) but not the later stage (series 1). In contrast, lavage fluid macrophage inflammatory protein-2 (MIP-2) was increased in all high-Vt animals. Lavage fluid from high-Vt animals contained bioactive TNF-alpha by WEHI bioassay. Low-Vt ventilation induced minimal changes in physiology and pathology with negligible TNF-alpha and MIP-2 proteins and TNF-alpha bioactivity. These results demonstrate that high-Vt ventilation in the absence of underlying injury induces intrapulmonary TNF-alpha and MIP-2 expression in mice. The apparently transient nature of TNF-alpha upregulation may help explain previous controversy regarding the involvement of cytokines in ventilator-induced lung injury.  相似文献   

20.
Despite decades of research, the mechanisms of ventilator-induced lung injury are poorly understood. We used strain-dependent responses to mechanical ventilation in mice to identify associations between mechanical and inflammatory responses in the lung. BALB/c, C57BL/6, and 129/Sv mice were ventilated using a protective [low tidal volume and moderate positive end-expiratory pressure (PEEP) and recruitment maneuvers] or injurious (high tidal volume and zero PEEP) ventilation strategy. Lung mechanics and lung volume were monitored using the forced oscillation technique and plethysmography, respectively. Inflammation was assessed by measuring numbers of inflammatory cells, cytokine (IL-6, IL-1β, and TNF-α) levels, and protein content of the BAL. Principal components factor analysis was used to identify independent associations between lung function and inflammation. Mechanical and inflammatory responses in the lung were dependent on ventilation strategy and mouse strain. Three factors were identified linking 1) pulmonary edema, protein leak, and macrophages, 2) atelectasis, IL-6, and TNF-α, and 3) IL-1β and neutrophils, which were independent of responses in lung mechanics. This approach has allowed us to identify specific inflammatory responses that are independently associated with overstretch of the lung parenchyma and loss of lung volume. These data provide critical insight into the mechanical responses in the lung that drive local inflammation in ventilator-induced lung injury and the basis for future mechanistic studies in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号