首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new hydrophobic and catalytic membrane was prepared by immobilizing Penicillin G acylase (PGA, EC.3.5.1.11) from E. coli on a nylon membrane, chemically grafted with butylmethacrylate (BMA). Hexamethylenediamine (HMDA) and glutaraldehyde (Glu) were used as a spacer and coupling agent, respectively. PGA was used for the enzymatic synthesis of cephalexin, using D(-)-phenylglycine methyl ester (PGME) and 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) as substrates. Several factors affecting this reaction, such as pH, temperature, and concentrations of substrates were investigated. The results indicated good enzyme-binding efficiency of the pre-treated membrane, and an increased stability of the immobilized PGA towards pH and temperature. Calculation of the activation energies showed that cephalexin production by the immobilized biocatalyst was limited by diffusion, resulting in a decrease of enzyme activity and substrate affinity. Temperature gradients were employed as a way to reduce the effects of diffusion limitation. Cephalexin was found to linearly increase with the applied temperature gradient. A temperature difference of about 3 degrees C across the catalytic membrane resulted into a cephalexin synthesis increase of 100% with a 50% reduction of the production times. The advantage of using non-isothermal bioreactors in biotechnological processes, including pharmaceutical applications, is also discussed.  相似文献   

2.
The dynamic and steady-state responses as well as the response times of a glucose biosensor have been studied under isothermal and non-isothermal conditions as a function of analyte concentration. The presence of a temperature gradient across the catalytic membrane system improved the biosensor characteristics, because the dynamic and steady-state responses increased and the response times decreased under non-isothermal conditions. For example, a macroscopic temperature difference of 20 degrees C applied across the catalytic membrane system increases the biosensor sensitivity of 70% and reduces of 50% its response time. The dependence of the observed effects on the magnitude of the temperature difference applied has been correlated with the substrate (and products) transport across the catalytic membrane system due to the process of thermodialysis.  相似文献   

3.
Lactose hydrolysis by β-galactosidase immobilized on two nylon membranes, differently grafted, has been studied in a bioreactor operating under isothermal and non-isothermal conditions. One membrane (M1) was obtained by chemical grafting of methylmethacrylate (MAA); the other one (M2) by a double chemical grafting: styrene (Sty) and MAA. Hexamethylenediamine was used as a spacer between the grafted membranes and the enzyme. Both membranes have been physically characterized studying their permeabilities in presence of pressure or temperature gradients. Under non-isothermal conditions, the increase in activity of membrane M2 was higher than that of membrane M1. The and β coefficients, giving the percentage of activity increase when a temperature difference of 1°C is applied across the catalytic membranes, have been calculated. Results have been discussed with reference to the greater hydrophobicity of membrane M2 with respect to membrane M1, the hydrophobicity being a prerequisite for the occurrence of the process of thermodialysis.  相似文献   

4.
The effect of methanol on the kinetically controlled synthesis of cephalexin by free and immobilized penicillin G acylase (PGA) was investigated. Catalytic and hydrophobic membranes were obtained by chemical grafting, activation, and PGA immobilization on hydrophobic nylon supports. Butyl methacrylate (BMA) was used as graft monomer. Increasing concentrations of methanol were found to cause a greater deleterious effect on the activity of free than on that of the immobilized enzyme. Methanol, however, improved the kinetic stability of cephalexin synthesized by free PGA, resulting in higher maximum yields. By contrast, immobilized PGA reached 100% yields even in the absence of the cosolvent. Cephalexin synthesis by the catalytic membrane was also performed in a non-isothermal bioreactor. Under these conditions, a 94% increase of the synthetic activity and complete conversion of the limiting substrate to cephalexin were obtained. The addition of methanol reduced the non-isothermal activity increase. The physical cause responsible for the non-isothermal behavior of the hydrophobic catalytic membrane was identified in the process of thermodialysis.  相似文献   

5.
β-Galactosidase has been immobilised through spacers of different length on nylon membranes grafted with glycidyl methacrylate. Hexamethylendiamine, ethylendiamine or hydrazine have been separately used as spacers.

The behaviour of the catalytic membranes has been studied in a bioreactor operating under non-isothermal conditions as a function of the applied temperature difference ΔT.

Comparison of the enzyme reaction rates under isothermal and non-isothermal conditions resulted in percentage activity increases (PAI) and reduction of the production time (τr) proportional to the size of the applied ΔT. Both these parameters increased with the increase of the spacer length.

Results have been discussed in the frame of reference of the process of thermodialysis which reduces the limitations to the diffusion of substrate and reaction products across the catalytic membrane, limitations introduced by the grafting and immobilisation process.

The advantages of employing non-isothermal bioreactors in biotechnological productive processes have been outlined.  相似文献   


6.
Laccase from Rhus vernicifera was immobilised on a nylon membrane chemically grafted with glycidyl methacrylate (GMA). Hexamethylenediamine (HMDA) and glutaraldehyde (GLU) were used as spacer and bifunctional coupling agent, respectively. Quinol was used as substrate.

To know how the immobilisation procedures affected the enzyme reaction rate the catalytic behaviour of soluble and insoluble laccase was studied under isothermal conditions as a function of pH, temperature and substrate concentration. From these studies, two main singularities emerged from the experimental data: (i) the narrower pH-activity profile of the insoluble enzyme in comparison to that of the soluble counterpart; (ii) the increase of the affinity of the immobilised enzyme for its substrate.

The behaviour of the catalytic membrane was also studied in a non-isothermal bioreactor as a function of substrate concentration and size of the applied transmembrane temperature difference. It was found that, under non-isothermal conditions and keeping constant the average temperature of the bioreactor, the enzyme reaction rate linearly increases with the increase of the temperature difference. These results have been discussed in the frame of reference of the process of thermodialysis driving thermodiffusive transmembrane substrate fluxes, which add to the diffusive ones.

The advantages of the catalytic process carried out under non-isothermal conditions have been thrown in relief through the evaluation of the reduction of the production times and of the percentage increases of the enzyme activity.  相似文献   


7.
Laccase from Rhus vernicifera was immobilized on a polypropylene membrane chemically modified with chromic acid. Ethylenediamine and glutaraldehyde were used as spacer and bifunctional coupling agent, respectively. Phenol was used as substrate.To know how the immobilization procedures affected the enzyme reaction rate the catalytic behavior of soluble and insoluble laccase was studied under isothermal conditions as a function of pH, temperature and substrate concentration. From these studies, two main singularities emerged: (i) the narrower pH–activity profile of the soluble enzyme in comparison to that of the insoluble counterpart and (ii) the increase in pH and thermal stability of the insoluble enzyme.The laccase catalytic behavior was also studied in a non-isothermal bioreactor as a function of substrate concentration and size of the applied transmembrane temperature difference. It was found that, under non-isothermal conditions and keeping constant the average temperature of the bioreactor, the enzyme reaction rate linearly increased with the increase of the temperature difference.  相似文献   

8.
The behaviour of five different hydrophobic β-galactosidase derivatives, obtained by grafting different amount of butylmethacrylate (BMA) on planar nylon membranes, has been studied under isothermal and non-isothermal conditions.

Under isothermal conditions the effect of the grafting percentage on the enzyme activity has been studied as a function of pH, temperature and substrate concentration. Independently from the parameters under observation, the yield of the catalytic process reaches the maximum value at a grafting percentage value equal to 21%. The apparent Km values result linearly increasing with the increase of the grafting percentage, while the apparent Vmax exhibits a maximum value.

Under non-isothermal conditions, a decrease of the apparent Km values and increase of the apparent Vmax has been found in respect to the same values obtained under isothermal conditions.

The percentage activity increases induced by the presence of a temperature gradient have been found to decrease with the increase of the percentage of graft BMA.

A parameter correlating the percentage increase of enzyme activity under non-isothermal conditions with the hydrophobicity of the catalytic membrane has also been identified. This parameter is the ratio between thermoosmotic and hydraulic permeability.

Results have been discussed in terms of reduction of diffusion limitations for substrate and products movement towards or away from the catalytic site by the process of thermodialysis.

The usefulness of using non-isothermal bioreactors in industrial biotechnological processes has been confirmed.  相似文献   


9.
Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1 degrees C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills.  相似文献   

10.
A novel packed-bed bioreactor, operating under isothermal and non-isothermal conditions, has been constructed. The core of the apparatus consisted in a polypropylene ring filled with beta-galactosidase immobilized on beads of polyacrylic acid, grafted with dimethylaminoethyl methacrylate. Phenylendiamine and glutaraldehyde were used as spacer and coupling agent, respectively. Two lateral nylon membranes held the enzyme beads into the ring and allowed the occurrence of the process of thermodialysis when the bioreactor was operating under non-isothermal conditions. Comparison of the enzyme activity under isothermal and non-isothermal conditions has shown that in the presence of temperature gradients the rate of lactose hydrolysis was increased, with a reduction of the apparent Km value. Under non-isothermal conditions the percentage increases of enzyme activity were found to decrease with the increase of the substrate concentration. The results have been explained within the frame of reference of the process of thermodialysis.  相似文献   

11.
The catalytic behaviour under isothermal conditions of two different membranes loaded with β-galactosidase was investigated. One membrane (M1) was constituted by a nylon sheet grafted with methylmethacrylate by means of chemical grafting. The other, (M2), was prepared by a double chemical grafting: the first one with styrene (Sty) and the second one with methylmethacrylate. Membrane activity was characterized as a function of temperature, pH and substrate concentration. The role of Sty in increasing membrane hydrophobicity has been discussed. Membrane M2 was found to be better suited for employment in non-isothermal bioreactors.  相似文献   

12.
A hollow-fiber enzyme reactor, operating under isothermal and nonisothermal conditions, was built employing a polypropylene hollow fiber onto which beta-galactosidase was immobilized. Hexamethylenediamine and glutaraldehyde were used as spacer and coupling agent, respectively. Glucose production was studied as a function of temperature, substrate concentration, and size of the transmembrane temperature gradient. The actual average temperature differences across the polypropylene fiber, to which reference was done to evaluate the effect of the nonisothermal conditions, were calculated by means of a mathematical approach, which made it possible to know, using computer simulation, the radial and axial temperature profiles inside the bioreactor and across the membrane. Percent activity increases, proportional to the size of the temperature gradients, were found when the enzyme activities under nonisothermal conditions were compared to those measured under comparable isothermal conditions. Percent reductions of the production times, proportional to the applied temperature gradients, were also calculated. The advantage of employing nonisothermal bioreactors in biotechnological industrial process was discussed.  相似文献   

13.
The effect of thermodialysis on the enzymatic kinetic synthesis of the antibiotic cephalexin was investigated. As reference points, two existing models for an immobilised enzyme (Assemblase®) and for the free enzyme were used. For Assemblase®, it is known that diffusion limitation occurs and that therefore considerably more of the undesired side-product phenylglycine is formed.

The enzyme was immobilised on a membrane, and under isothermal conditions (293 K) the course of the reaction resembled that of the Assemblase® enzyme. However, if a temperature gradient was applied across the membrane, with an average temperature of 293 K for the enzyme, than the course of the reaction changed. For large temperature gradients (30° and more), the course of the reaction resembled that of free enzyme. Thermodialysis enhances mass transfer across the membrane and therewith reduces diffusion limitations in the immobilised enzyme on the membrane.

The stability of the immobilised enzyme is such that the reactor can be re-used repeatedly. This, together with the positive effect of the temperature gradient on the course of the reaction, makes thermodialysis an interesting new technique that has potential to be applied on a larger scale if the membrane surface area per volume of reactor can be improved.  相似文献   


14.
The results obtained with a glucose biosensor operating under non-isothermal conditions are presented and discussed. Glucose oxidase, immobilized onto Nylon membranes, was used as biological element. An amperometric two electrodes system was employed to measure the anodic current produced by oxidation of hydrogen peroxide. Non-isothermal conditions were characterised in terms of the temperature difference, delta T = Tw - Tc, and of the average temperature of the system, Tav = (Tw + Tc)/2, Tw and Tc being the temperature in the warm and cold half-cells constituting the biosensor. Comparison between the functioning of the biosensor under isothermal and non-isothermal conditions was performed. It was found that, under non-isothermal conditions, the dynamic response and sensitivity increased, while the response times and the detection limit decreased, if comparison was done with the same parameters measured under isothermal conditions. The increase of the dynamic response was found to be proportional to the applied temperature gradient.  相似文献   

15.
Carrier-mediated transport of aminocephalosporin antibiotics by renal brush-border membrane vesicles has been studied in relation to the transport systems for dipeptides and amino acids. Dipeptides such as L-carnosine (beta-alanyl-L-histidine) and L-phenylalanylglycine competitively inhibited the uptake of cephalexin, but amino acids did not. Cephalexin uptake was stimulated by the countertransport effect of L-carnosine in the normal and papain-treated vesicles, and by the effect of L-phenylalanylglycine only in the papain-treated vesicles. In the papain-treated vesicles, the hydrolysis of dipeptides was markedly decreased, and the specific activity for cephalexin transport was increased approx. 2-fold because of the partial removal of membrane proteins. These results suggest that carrier-mediated transport of cephalexin can be transported by the system for dipeptides in renal brush-border membranes.  相似文献   

16.
Penicillin G acylase (PGA) has been immobilized onto nylon membranes grafted with methylmethacrylate (MMA) or diethyleneglycoldimethacrylate (DGDA) monomers by means of γ-radiation. Hexamethylenediamine (HMDA) has been used as spacer between the grafted membranes and the enzyme. Glutaraldehyde (GA) was used as crosslinking to couple the enzyme to the HMDA. The catalytic membranes so prepared were studied as a function of pH and temperature of the solution containing the substrate. The membranes showing the best characteristics were the ones grafted with DGDA. The dependence of the behavior of these membranes on several experimental conditions was studied, i.e., the temperature and duration of the aminoalkylation process, spacer concentration, the glutaraldehyde concentration and the enzyme concentration. The experimental conditions giving the best performance of the catalytic membranes have been deduced. The time requested to obtain 50% of substrate conversion, i.e., hydrolysis of cephalexin, has been studied as a function of its initial concentration.  相似文献   

17.
Hydrolysis of several N alpha-substituted L-arginine 4-nitroanilides with porcine pancreatic kallikrein was studied under different conditions of pH, temperature, and salt concentration. At high substrate concentrations a deviation from Michaelis-Menten kinetics was observed with a significant increase in the hydrolysis rates of almost all substrates. Kinetic data were analyzed on the assumption that porcine pancreatic kallikrein presents an additional binding site with lower affinity for the substrate. Binding to this auxiliary site gives rise to a modulated enzyme species which can hydrolyze an additional molecule of the substrate through a second catalytic pathway. The values of both Michaelis-Menten and catalytic rate constants were higher for the modulated species than for the free enzyme, suggesting a mechanism of enzyme activation by substrate. Kinetic data indicated similar substrate requirements for binding at the primary and auxiliary sites of the enzyme. Tris(hydroxymethyl)aminomethane hydrochloride and NaCl were shown to alter the kinetic parameters of the hydrolysis of N alpha-acetyl-L-Phe-L-Arg 4-nitroanilide by porcine pancreatic kallikrein but not the enzyme activation pattern (ratio of the catalytic constants for the activated and the free enzyme forms). Similar observations were made when the hydrolysis of D-Val-L-Leu-L-Arg 4-nitroanilide was studied under different pH and temperature conditions.  相似文献   

18.
Endocrine disruptors are chemicals able to induce adverse effects into wildlife and humans owing to their ability of interfering with the endocrine system. Bisphenol A (BPA) has been chosen as model of endocrine disruptors. To reduce the BPA pollution in waters we proposed the employment of the process of thermodialysis. Two different catalytic membranes have been prepared by covalently immobilizing laccase (from Trametes versicolor) by means of a diazotation process or tyrosinase (from mushroom) by condensation. The support was a nylon membrane. The bioremediation power of both catalytic membranes has been analysed under isothermal and non-isothermal conditions.The advantages in using non-isothermal bioreactors were discussed in terms of reduction of the bioremediation times.  相似文献   

19.
This study aimed to compare the kinetics of lipopeptide production in solid-state fermentation (SSF) under isothermal and non-isothermal conditions. Models based on the logistic, modified Gompertz and Luedeking–Piret-like equations were developed to describe the time course of fermentation under different conditions. The experiments were conducted in 250 mL flasks and a 50 L fermenter. The results showed that the non-isothermal process had higher levels of product formation rate and substrate utilization rate compared to the isothermal process. The part of substrate carbon to meet microbial maintenance—energy, biomass and lipopeptides formation requirements got increased using the non-isothermal technique. In addition, fermenter conditions positively influenced the lipopeptides formation rate with significantly higher levels of substrate for the microbial growth and product formation, though the product productivity and biomass both decreased as compared to flask. This is the first report that investigates the effects of temperature changing on the kinetics of lipopeptide production by Bacillus amyloliquefaciens strain under SSF condition using soybean flour and rice straw as major substrates in flask and in fermenter.  相似文献   

20.
Synthesis of cephalexin with immobilized penicillin acylase at high substrates concentration at an acyl donor to nucleophile molar ratio of 3 was comparatively evaluated in aqueous and ethylene glycol media using a statistical model. Variables under study were temperature, pH and enzyme to substrate ratio and their effects were evaluated on cephalexin yield, ratio of initial rates of cephalexin synthesis to phenylglycine methyl ester hydrolysis, volumetric and specific productivity of cephalexin synthesis, that were used as response parameters. Results obtained in both reaction media were modeled using surface of response methodology and optimal operation conditions were determined in terms of an objective function based on the above parameters. At very high substrates concentrations the use of organic co-solvents was not required to attain high yields and actually almost stoichiometric yields were obtained in a fully aqueous media with the advantages of higher productivities than in an organic co-solvent media and compliance with the principles of green chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号