共查询到20条相似文献,搜索用时 31 毫秒
1.
Docosahexaenoic acid synthesis from n-3 fatty acid precursors in rat hippocampal neurons 总被引:1,自引:0,他引:1
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14 C]α-linolenic or [1-14 C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14 C]22:6n-3. Most of the [1-14 C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14 C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain. 相似文献
2.
Comparison of 20-, 22-, and 24-carbon n-3 and n-6 polyunsaturated fatty acid utilization in differentiated rat brain astrocytes 总被引:2,自引:0,他引:2
Williard DE Harmon SD Kaduce TL Spector AA 《Prostaglandins, leukotrienes, and essential fatty acids》2002,67(2-3):99-104
Astrocytes convert n-6 fatty acids primarily to arachidonic acid (20:4n-6), whereas n-3 fatty acids are converted to docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids. The utilization of 20-, 22- and 24-carbon n-3 and n-6 fatty acids was compared in differentiated rat astrocytes to determine the metabolic basis for this difference. The astrocytes retained 81% of the arachidonic acid ([(3)H]20:4n-6) uptake and retroconverted 57% of the docosatetraenoic acid ([3-(14)C]22:4n-6) uptake to 20:4n-6. By contrast, 68% of the eicosapentaenoic acid ([(3)H]20:5n-3) uptake was elongated, and only 9% of the [3-(14)C]22:5n-3 uptake was retroconverted to 20:5n-3. Both tetracosapentaenoic acid ([3-(14)C]24:5n-3) and tetracosatetraenoic acid ([3-(14)C]24:4n-6) were converted to docosahexaenoic acid (22:6n-3) and 22:5n-6, respectively. Therefore, the difference in the n-3 and n-6 fatty acid products formed is due primarily to differences in the utilization of their 20- and 22-carbon intermediates. This metabolic difference probably contributes to the preferential accumulation of docosahexaenoic acid in the brain. 相似文献
3.
R.A. Gibson M.A. Neumann E.L. Lien K.A. Boyd W.C. Tu 《Prostaglandins, leukotrienes, and essential fatty acids》2013,88(1):139-146
The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07–17.1 en%) and ALA (0.02–12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1–3 en% ALA and 1–2 en% LA but was suppressed to basal levels (~2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%). 相似文献
4.
Igarashi M DeMar JC Ma K Chang L Bell JM Rapoport SI 《Journal of lipid research》2007,48(5):1150-1158
Rates of conversion of alpha-linolenic acid (alpha-LNA, 18:3n-3) to docosahexaenoic acid (DHA, 22:6n-3) by the mammalian brain and the brain's ability to upregulate these rates during dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) are unknown. To answer these questions, we measured conversion coefficients and rates in post-weaning rats fed an n-3 PUFA deficient (0.2% alpha-LNA of total fatty acids, no DHA) or adequate (4.6% alpha-LNA, no DHA) diet for 15 weeks. Unanesthetized rats in each group were infused intravenously with [1-(14)C]alpha-LNA, and their arterial plasma and microwaved brains collected at 5 minutes were analyzed. The deficient compared with adequate diet reduced brain DHA by 37% and increased brain arachidonic (20:4n-6) and docosapentaenoic (22:5n-6) acids. Only 1% of plasma [1-(14)C]alpha-LNA entering brain was converted to DHA with the adequate diet, and conversion coefficients of alpha-LNA to DHA were unchanged by the deficient diet. In summary, the brain's ability to synthesize DHA from alpha-LNA is very low and is not altered by n-3 PUFA deprivation. Because the liver's reported ability is much higher, and can be upregulated by the deficient diet, DHA converted by the liver from circulating alphaLNA is the source of the brain's DHA when DHA is not in the diet. 相似文献
5.
The biochemistry of n-3 polyunsaturated fatty acids 总被引:27,自引:0,他引:27
Jump DB 《The Journal of biological chemistry》2002,277(11):8755-8758
6.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission. 相似文献
7.
Kodas E Galineau L Bodard S Vancassel S Guilloteau D Besnard JC Chalon S 《Journal of neurochemistry》2004,89(3):695-702
We explored the effects of chronic alpha-linolenic acid dietary deficiency on serotoninergic neurotransmission. In vivo synaptic serotonin (5-HT) levels were studied in basal and pharmacologically stimulated conditions using intracerebral microdialysis in the hippocampus of awake 2-month-old rats. We also studied the effects of reversion of the deficient diet on fatty acid composition and serotoninergic neurotransmission. A balanced (control) diet was supplied to deficient rats at different stages of development, i.e. from birth, 7, 14 or 21 days of age. We demonstrated that chronic n-3 polyunsaturated fatty acid dietary deficiency induced changes in the synaptic levels of 5-HT both in basal conditions and after pharmacological stimulation with fenfluramine. Higher levels of basal 5-HT release and lower levels of 5-HT-stimulated release were found in deficient than in control rats. These neurochemical modifications were reversed by supply of the balanced diet provided at birth or during the first 2 weeks of life through the maternal milk, whereas they persisted if the balanced diet was given from weaning (at 3 weeks of age). This suggests that provision of essential fatty acids is durably able to affect brain function and that this is related to the developmental stage during which the deficiency occurs. 相似文献
8.
Yanrong Zhou Yanli Lin Xiaojie Wu Chong Feng Chuan Long Fuyin Xiong Ning Wang Dengke Pan Hongxing Chen 《Transgenic research》2014,23(1):89-97
Livestock meat is generally low in n-3 polyunsaturated fatty acids (PUFAs), which are beneficial to human health. An alternative approach to increasing the levels of n-3 PUFAs in meat is to generate transgenic livestock animals. In this study, we describe the generation of cloned pigs that express the cbr-fat-1 gene from Caenorhabditis briggsae, encoding an n-3 fatty acid desaturase. Analysis of fatty acids demonstrated that the cbr-fat-1 transgenic pigs produced high levels of n-3 fatty acids from n-6 analogs; consequently, a significantly reduced ratio of n-6/n-3 fatty acids was observed. We demonstrated that the n-3 desaturase gene from C. briggsae was functionally expressed, and had a significant effect on the fatty acid composition of the transgenic pigs, which may allow the production of pork enriched in n-3 PUFAs. 相似文献
9.
n-3 polyunsaturated fatty acids and the cardiovascular system 总被引:7,自引:0,他引:7
n-3 Polyunsaturated fatty acids, mainly those contained in fish oils, are candidates for inclusion in secondary prevention programmes for coronary heart disease, based on the results of recent randomized trials in humans. Marine n-3 polyunsaturated fatty acids retard coronary atherosclerosis and appear to prevent fatal arrhythmias; and they decrease mortality subsequent to myocardial infarction. 相似文献
10.
T Hamazaki 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1992,200(2):171-173
Dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) is regarded as beneficial for the prevention and treatment of atherosclerosis and thrombosis and chronic inflammatory diseases like rheumatoid arthritis and psoriasis. It may be possible to treat some acute diseases like acute myocardial infarction or acute rejection of grafted organs if it is possible to make n-3 PUFA take effect quickly (in hours instead of days). Three sets of experiments were done. In Experiment 1, emulsion of trieicosapentaenoyl-glycerol (EPA-TG) and tridocosahexaenoyl-glycerol was infused through rabbit ear veins, and the leukotriene B4/B5 production from polymorphonuclear leukocytes was measured at different time points by high-performance liquid chromatography. In Experiment 2, delayed type hypersensitivity (DTH) of mice was measured with sheep red blood cells as an antigen. Pure n-3 PUFA emulsions or a control solution were infused through tail veins just before the second challenge of the antigen. DTH was measured 24 hr after the second challenge. In Experiment 3, human natural killer cell activity was measured using K562 target cells before and after the infusion of pure EPA-TG emulsion to an antecubital vein. Leukotriene B4 production by rabbit polymorphonuclear leukocytes was depressed by 40% by EPA-TG infusion. DTH was suppressed almost completely by n-3 PUFA infusion. Natural killer cell activity was suppressed almost completely by EPA-TG infusion in 8 hr. DTH, natural killer cell activity, and leukotriene B4 production are probably related to acute rejection of grafted organs.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
Male rat pups (21 days old) were placed on a diet deficient in n-3 polyunsaturated fatty acids (PUFAs) or on an n-3 PUFA adequate diet containing alpha-linolenic acid (alpha-LNA; 18 : 3n-3). After 15 weeks on a diet, [4,5-3H]docosahexaenoic acid (DHA; 22 : 6n-3) was injected into the right lateral cerebral ventricle, and the rats were killed at fixed times over a period of 60 days. Compared with the adequate diet, 15 weeks of n-3 PUFA deprivation reduced plasma DHA by 89% and brain DHA by 37%; these DHA concentrations did not change thereafter. In the n-3 PUFA adequate rats, DHA loss half-lives, calculated by plotting log10 (DHA radioactivity) against time after tracer injection, equaled 33 days in total brain phospholipid, 23 days in phosphatidylcholine, 32 days in phosphatidylethanolamine, 24 days in phosphatidylinositol and 58 days in phosphatidylserine; all had a decay slope significantly greater than 0 (p < 0.05). In the n-3 PUFA deprived rats, these half-lives were prolonged twofold or greater, and calculated rates of DHA loss from brain, Jout, were reduced. Mechanisms must exist in the adult rat brain to minimize DHA metabolic loss, and to do so even more effectively in the face of reduced n-3 PUFA availability for only 15 weeks. 相似文献
12.
Recent literature provides a basis for understanding the behavioral, functional, and structural consequences of nutritional deprivation or disease-related abnormalities of n-3 polyunsaturated fatty acids. The literature suggests that these effects are mediated through competition between n-3 and n-6 polyunsaturated fatty acids at certain enzymatic steps, particularly those involving polyunsaturated fatty acid elongation and desaturation. One critical enzymatic site is a delta6-desaturase. On the other hand, an in-vivo method in rats, applied following chronic n-3 nutritional deprivation or chronic administration of lithium, indicates that the cycles of de-esterification/re-esterification of docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6) within brain phospholipids operate independently of each other, and thus that the enzymes regulating each of these cycles are not likely sites of n-3/n-6 competition. 相似文献
13.
Interactions of saturated, n-6 and n-3 polyunsaturated fatty acids to modulate arachidonic acid metabolism 总被引:6,自引:0,他引:6
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed. 相似文献
14.
Jahangiri A Leifert WR Patten GS McMurchie EJ 《Molecular and cellular biochemistry》2000,206(1-2):33-41
A protective effect of the n-3 polyunsaturated fatty acids (PUFAs) in preventing ventricular fibrillation in experimental animals and cultured cardiomyocytes has been demonstrated in a number of studies. In this study, a possible role for the n-3 PUFAs in the treatment of atrial fibrillation (AF) was investigated at the cellular level using atrial myocytes isolated from young adult rats as the experimental model. Electrically-stimulated, synchronously-contracting myocytes were induced to contract asynchronously by the addition of 10 M isoproterenol. Asynchronous contractile activity was reduced following acute addition of the n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at 10 M, compared with no fatty acid addition (from 99.0 ±: 1.0% to 30.7 ± 5.2% (p < 0.05) for DHA and 23.8 ± 2.8% (p < 0.01) for EPA), while the saturated fatty acid, docosanoic acid (DA) and the methyl ester of DHA (DHA m.e.) did not exert a significant effect on asynchronous contractile activity. Asynchronous contractile activity was also reduced to 1.7 ± 1.7% in the presence of the membrane fluidising agent, benzyl alcohol (p < 0.001 vs no fatty acid addition). Cell membrane fluidity was determined by steady state fluorescence anisotropy using the fluorescent probe, TMAP-DPH. Addition of DHA, EPA or benzyl alcohol significantly increased sarcolemmal membrane fluidity (decreased anisotropy, rss) of atrial myocytes compared with no addition of fatty acid (control) (from rss = 0.203 ±0.004 to 0.159 ± 0.004 (p < 0.01) for DHA, 0.166 ± 0.001 (p < 0.01) for EPA and 0.186 ±0.003 (p < 0.05) for benzyl alcohol, while DA and DHA m.e. were without effect. It is concluded that the n-3 PUFAs exert anti-asynchronous effects in rat atrial myocytes by a mechanism which may involve changes in membrane fluidity. 相似文献
15.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg weight/24 h) on ascorbate (0-0.4 mM) induced lipid peroxidation of mitochondria isolated from rat liver, cerebral hemispheres, brain stem and cerebellum was examined. The ascorbate induced light emission in hepatic mitochondria was nearly completely inhibited by alpha-tocopherol (control-group: 114.32+/-14.4; vitamin E-group: 17.45+/-2.84, c.p.m.x10(-4)). In brain mitochondria, 0.2 mM ascorbate produced the maximal chemiluminescence and significant differences among both groups were not observed. No significant differences in the chemiluminescence values between control and vitamin E treated groups were observed when the three brain regions were compared. The light emission produced by mitochondrial preparations was much higher in cerebral hemispheres than in brain stem and cerebellum. In liver and brain mitochondria from control group, the level of arachidonic acid (C20:4n6) and docosahexaenoic acid (C22:6n3) was profoundly affected. Docosahexaenoic in liver mitochondria from vitamin E group decreased by 30% upon treatment with ascorbic acid when compared with mitochondria lacking ascorbic acid. As a consequence of vitamin E treatment, a significant increase of C22:6n3 was detected in rat liver mitochondria (control-group: 6.42 +/-0.12; vitamin E-group: 10.52 +/-0.46). Ratios of the alpha-tocopherol concentrations in mitochondria from rats receiving vitamin E to those of control rats were as follows: liver, 7.79; cerebral hemispheres, 0.81; brain stem, 0.95; cerebellum, 1.05. In liver mitochondria, vitamin E shows a protector effect on oxidative damage. In addition, vitamin E concentration can be increased in hepatic but not in brain mitochondria. Lipid peroxidation mainly affected, arachidonic (C20:4n6) and docosahexaenoic (C22:6n3) acids. 相似文献
16.
The influences of diets having different fatty acid compositions on the fatty-acid content, desaturase activities, and membrane fluidity of rat liver microsomes have been analyzed. Weanling male rats (35–45 g) were fed a fat-free semisynthetic diet supplemented with 10% (by weight) marine fish oil (FO, 12.7% docosahexaenoic acid and 13.8% eicosapentaenoic acid), evening primrose oil (EPO, 7.8% γ-linolenic acid and 70.8% linoleic acid) or a mixture of 5% FO-5% EPO. After 12 weeks on the respective diets, animals fed higher proportions of (n-3) polyunsaturated fatty acids (FO group) consistently contained higher levels of 20:3(n-6), 20:5(n-3), 22:5(n-3), and 22:6(n-3), and lower levels of 18:2(n-6) and 20:4(n-6), than those of the EPO (a rich source of (n-6) polyunsaturated fatty acids) or the FO + EPO groups. Membrane fluidity, as estimated by the reciprocal of the order parameter SDPH, was higher in the FO than in the EPO or the FO + EPO groups, and the n-6 fatty-acid desaturation system was markedly affected. 相似文献
17.
n-3 polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice 总被引:2,自引:0,他引:2
Vancassel S Leman S Hanonick L Denis S Roger J Nollet M Bodard S Kousignian I Belzung C Chalon S 《Journal of lipid research》2008,49(2):340-348
The aim of this study was to examine the effects of supplementation with n-3 polyunsaturated fatty acids (PUFAs) on stress responses in mice subjected to an unpredictable chronic mild stress (UCMS) procedure. Stress-induced modifications in coat and aggressiveness were evaluated, and phospholipid PUFA profiles and monoamine levels were analyzed in the frontal cortex, hippocampus, and striatum. The results showed that repeated exposure to mild stressors induced degradation in the physical state of the coat, lowered body weight gain, and increased aggressiveness, without any effect of n-3 PUFA supplementation. The UCMS induced a significant decrease in the levels of norepinephrine in the frontal cortex and striatum, and a nonsignificant decrease in the hippocampus. The tissue levels of serotonin (5-HT) were 40% to 65% decreased in the three brain regions studied. Interestingly, the n-3 PUFA supplementation reversed this stress-induced reduction in 5-HT levels. These findings showed that supplementation in n-3 long-chain PUFAs might reverse certain effects of UCMS in cerebral structures involved in stress-related behaviors. 相似文献
18.
Kim HW Rao JS Rapoport SI Igarashi M 《Prostaglandins, leukotrienes, and essential fatty acids》2011,85(6):361-368
Knowing threshold changes in brain lipids and lipid enzymes during dietary n-3 polyunsaturated fatty acid deprivation may elucidate dietary regulation of brain lipid metabolism. To determine thresholds, rats were fed for 15 weeks DHA-free diets having graded reductions of α-linolenic acid (α-LNA). Compared with control diet (4.6% α-LNA), plasma DHA fell significantly at 1.7% dietary α-LNA while brain DHA remained unchanged down to 0.8% α-LNA, when plasma and brain docosapentaenoic acid (DPAn-6) were increased and DHA-selective iPLA2 and COX-1 activities were downregulated. Brain AA was unchanged by deprivation, but AA selective-cPLA2, sPLA2 and COX-2 activities were increased at or below 0.8% dietary α-LNA, possibly in response to elevated brain DPAn-6. In summary, homeostatic mechanisms appear to maintain a control brain DHA concentration down to 0.8% dietary DHA despite reduced plasma DHA, when DPAn-6 replaces DHA. At extreme deprivation, decreased brain iPLA2 and COX-1 activities may reduce brain DHA loss. 相似文献
19.
Tufarelli V Valentini L Dario M Laudadio V 《Animal : an international journal of animal bioscience》2010,4(5):763-766
The study was carried out on 42 breeder couples (42 males and 42 females) of European brown hare (Lepus europaeus), divided into three groups fed three different experimental diets (14 couples/treatment). Two diets were supplemented with n-3 and n-6 polyunsaturated fatty acids (PUFAs; 2% of linseed oil and soybean oil, respectively) and were compared with a control diet supplemented with a monounsaturated fatty acids (2% of olive oil). During the experimental period (from 15 April to 30 September), the following parameters were recorded: days from the beginning of trial to the first parturition, parturition interval, number of parturitions, number of leverets born (alive and dead), dead during suckling, the total number of leverets weaned and feed intake per cage (of males, females and leverets until weaning). Feed intake was not influenced by treatments. In hares fed n-3 and n-6 diets, the days from the beginning of the trial to the first parturition and the parturition interval were similar and were lower compared with control group (63.1 v. 70.6 days, and 37.8 v. 40.9 days, respectively; P < 0.05). Hares from n-6 group had a higher (P < 0.05) number of parturitions per cage during the experimental period than the n-3 and control group that showed a similar value (3.00 v. 2.36, respectively). The total number of leverets born per cage and parturition in n-6 and n-3 groups increased with respect to those fed control diet (P < 0.05). The leverets' mortality rate at birth was higher in n-6 than in n-3 and control group (3.50 v. 2.17, respectively; P < 0.05). In control group, leverets' mortality rate during suckling was lower with respect to n-3 (P < 0.05) and n-6 (P < 0.05), showing the highest value for the latter (P < 0.05). In spite of this higher mortality, the number of leverets weaned per cage and parturition was higher (P < 0.05) in n-6 compared with n-3 group, being the latter higher than the control group (3.12, 2.79 and 2.43, respectively). Our results show that the dietary PUFAs, particularly n-6 supplementation, have a positive influence on the reproductive performances of the European brown hare. 相似文献
20.
Regulation of polyunsaturated fatty acid (PUFA) biosynthesis in proliferating and NGF-differentiated PC12 pheochromocytoma cells deficient in n-3 docosahexaenoic acid (DHA 22:6n-3) was studied. A dose- and time-dependent increase in eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and DHA in phosphatidylethanolamine (PtdEtn) and phosphatidylserine (PtdSer) glycerophospholipids (GPL) via the elongation/desaturation pathway following alpha-linolenic acid (ALA, 18:3n-3) supplements was observed. That was accompanied by a marked reduction of eicosatrienoic acid (Mead acid 20:3n-9), an index of PUFA deficiency. EPA supplements were equally effective converted to 22:5n-3 and 22:6n-3. On the other hand, supplements of linoleic acid (LNA, 18:2n-6) were not effectively converted into higher n-6 PUFA intermediates nor did they impair elongation/desaturation of ALA. Co-supplements of DHA along with ALA did not interfere with 20:5n-3 biosynthesis but reduced further elongation to 22-hydrocarbon PUFA intermediates. A marked decrease in the newly synthesized 22:5n-3 and 22:6n-3 following ALA or EPA supplements was observed after nerve growth factor (NGF)-induced differentiation. NGF also inhibited the last step in 22:5n-6 formation from LNA. These results emphasize the importance of overcoming n-3 PUFA deficiency and raise the possibility that growth factor regulation of the last step in PUFA biosynthesis may constitute an important feature of neuronal phenotype acquisition. 相似文献