首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that insulin binding is decreased in the olfactory bulb of both heterozygous (Fa/fa) and obese (fa/fa) Zucker rats. In the present study, we measured insulin binding in membranes prepared from the olfactory bulb, cerebral cortex, and hypothalamus of control (Fa/Fa) Wistar Kyoto rats; "fatty" (fa/fa) Wistar Kyoto rats; and phenotypically lean (Fa/?) Wistar Kyoto rats. Insulin binding was decreased in all brain regions, as well as the liver of the obese Wistar Kyoto fa/fa rats. Additionally, insulin binding was decreased in the liver and brain membranes from the Fa/? Wistar Kyoto rats. As most of the Fa/? rats were probably carriers of one 'fa' gene, but the population was only slightly hyperinsulinemic, we conclude that--as in the Zucker rat--it is the presence and expression of the 'fa' gene rather than downregulation which results in the decreased insulin binding. Thus, regulation of the brain insulin receptor appears to be independent of plasma or cerebrospinal fluid insulin levels.  相似文献   

2.
Leptin is an adipocyte-secreted hormone that binds hypothalamic receptors and potently decreases food intake. Leptin receptor defects in homozygous mutant Zucker fatty ( fa/fa) rats lead to massive obesity, hyperphagia, decreased energy expenditure, and insulin resistance, while the phenotype of heterozygous ( Fa/fa) lean rats lies between lean ( Fa/Fa) and obese ( fa/fa) rats. Whether heterezygotes exhibit specific changes in lipid metabolism in a diet-responsive manner is not clear. Thus, the specific aim of this study was to test whether the presence of one fa allele modulates lipid metabolism and leptin, and whether these effects are exacerbated by high-fat diet. We demonstrate that the presence of one fa allele significantly increases lipogenesis in adipose tissue assessed by glycerol-3-phosphate dehydrogenase (GPDH) and fatty acid synthase (FAS) activities. FAS is more responsive to high-fat diets than GPDH in Fa/fa rats. Adipose tissue leptin levels are significantly higher in fat pads of Fa/fa compared to Fa/Fa rats. Moreover, Fa/fa rats fed high-fat diet show an additional two-fold increase in leptin levels compared to wild type rats on the same diet. Collectively, these results indicate that the presence of one fa allele increase adipocyte lipogenic enzyme activities, which results in hyperleptinemia concurrent with increased adiposity.  相似文献   

3.
Cholecystokinin (CCK) receptor binding levels were compared between groups of genetically obese (fa/fa) and non-obese (Fa/-) Zucker rats of both sexes. The radioligand used was the iodinated octapeptide (CCK-8). Binding was measured in eight brain regions. The relative distribution among different brain regions of specifically bound CCK per mg protein was similar in all groups of animals. High binding levels were present in the olfactory bulb, cortex and caudate nucleus. Moderate levels were seen in hippocampus and hypothalamus, and low levels were observed in hindbrain, midbrain and thalamus. Obese animals of both sexes had significantly higher CCK receptor binding levels in the hippocampus and in the midbrain in comparison to lean controls. The male obese animals also had significantly elevated binding levels in the thalamic sample. These results demonstrate a correlation between genetic obesity and elevated CCK receptor binding levels in specific brain regions.  相似文献   

4.
Recent reports have suggested that the obesity and hyperphagia of the genetically obese Zucker rat may be related to defective insulin action or binding in the hypothalamus. We used quantitative autoradiography to determine if insulin binding is altered in specific hypothalamic nuclei associated with food intake. Insulin binding was measured in the arcuate (ARC), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei of 3–4-month-old lean (Fa/Fa) and genetically obese (fa/fa) Zucker rats. A consistently reproducible 15% increase in the total specific binding of 0.1 nM [125I]-insulin was found in the ARC of the obese genotype. A slight increase in insulin binding in the DMN was also found. No difference in specific insulin binding was found between genotypes in the VMN. Nonlinear least squares analysis of competitive binding studies showed that the Kd of the ARC insulin binding site was 33% higher in the lean rats than in the obese rats, indicating an increased affinity for insulin. No difference in site number (Bmax) was found in the ARC, DMN or VMN, and no evidence was found for reduced insulin binding in the hypothalamus of the obese (fa/fa) genotype. The results suggest that hyperphagia and obesity of the obese (fa/fa) Zucker rat genotype may be associated with increased insulin binding in the arcuate nucleus.  相似文献   

5.
Plasma concentrations of insulin, corticosterone, T3, T4 and glucose were measured at 6 hour intervals throughout 24 hours in undisturbed, 34-day-old lean (Fa/?) and genetically obese (fa/fa) Zucker rats. fa/fa rats had higher plasma concentrations of insulin at all sampling times and higher plasma concentrations of corticosterone at 0300 and 0900 hours. Neither T3 nor T4 levels differed between phenotypes at any sampling time. Fasting for 24 hours at 34 days abolished the hyperinsulinaemia of fa/fa rats and raised the plasma corticosterone concentrations of both phenotypes. Before weaning there were no phenotypic differences in the plasma insulin or corticosterone concentrations measured at two sampling times in undisturbed rats. Following an intra-gastric glucose load however, fa/fa rats became hyper-insulinaemic compared with similarly treated Fa/? animals. Pancreatic insulin contents were higher in fa/fa rats at 34 days of age, but not before weaning. Somatostatin contents of the pancreas, hypothalamus and cerebral cortex did not differ between phenotypes at either 18 or 34 days of age. In conclusion, the elevated plasma concentrations of insulin and corticosterone in young fa/fa rats may contribute to their greater lipid deposition and lower protein deposition.  相似文献   

6.
We investigated the prolactin-releasing peptide (PrRP) mRNA levels in the hypothalamus and brainstem of streptozotocin (STZ)-induced diabetic rats and fa/fa Zucker diabetic rats, using in situ hybridization histochemistry. PrRP mRNA levels in the hypothalamus and brainstem of STZ-induced diabetic rats were significantly reduced in comparison with those of control rats. PrRP mRNA levels in the diabetic rats were reversed by both insulin and leptin. PrRP mRNA levels in the fa/fa diabetic rats were significantly reduced in comparison with those of Fa/? rats. PrRP mRNA levels in the fa/fa diabetic rats were significantly increased by insulin-treatment, but did not reach control levels in the Fa/? rats. We also investigated the effect of restraint stress on PrRP mRNA levels in STZ-induced diabetic rats. The PrRP mRNA levels in the control and the STZ-induced diabetic rats increased significantly after restraint stress. The diabetic condition and insulin-treatment may affect the regulation of PrRP gene expression via leptin and other factors, such as plasma glucose level. The diabetic condition may not impair the role of PrRP as a stress mediator.  相似文献   

7.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

8.
TSE, ELIZABETH O, FRANCINE M GREGOIRE, BRIGITTE REUSENS, CLAUDE REMACLE, JOSEPH J HOET, PATRICIA R JOHNSON, JUDITH S STERN. Changes of islet size and islet size distribution resulting from protein malnutrition in lean (Fa/Fa) and obese (fa/fa) Zucker rats. Potential alterations in islet size and islet size distribution resulting from protein malnutrition were studied in lean (Fa/Fa) and obese (fa/fa) Zucker rats. The purpose was to investigate whether the distribution of enlarged islets in obese rats was altered by low-protein feeding. Four-week-old, male, lean and obese Zucker rats were fed either a diet containing 20% (w/w) protein (control diet) or a diet containing 5% (w/w) protein (low-protein diet) for 3 weeks. Pancreata were dissected at autopsy and immunostained for insulin. Islet size and distribution were determined by morphometric analysis. Body-weight gain, food intake, and serum insulin and glucose were also measured. After 3 weeks on the diets, serum insulin was significantly lower in both lean (-75%) and obese (-54%) rats fed low protein compared with that in controls. However, obese rats were still hyperinsulinemic compared with lean rats. Protein malnutrition resulted in a shift in distribution of islets to smaller size both in lean and in obese rats, with an increase in the population of small islets (100 μm2) and a decrease in the population of large islets (>20,000 μ;m2). In lean and obese rats fed low protein, β-cell weight was significantly lower, B cell volume fraction tended to decrease, and islet number per section area was significantly elevated when compared with controls. Taken together, these results show that protein deficiency alters the endocrine pancreas in both lean and obese Zucker rats. Although the decrease in islet size and the shift in distribution to smaller islets most likely contribute to the decrease in serum insulin concentration, these changes appear insufficient to normalize hyperinsulinemia in the obese Zucker rat.  相似文献   

9.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

10.
1. The effect of insulin (0.5, 10 and 50 munits/ml of perfusate) on glucose uptake and disposal in skeletal muscle was studied in the isolated perfused hindquarter of obese (fa/fa) and lean (Fa/Fa) Zucker rats and Osborne-Mendel rats. 2. A concentration of 0.5 munit of insulin/ml induced a significant increase in glucose uptake (approx. 2.5 mumol/min per 30 g of muscle) in lean Zucker rats and in Osborne-Mendel rats, and 10 munits of insulin/ml caused a further increase to approx. 6 mumol/min per 30 g of muscle; but 50 munits of insulin/ml had no additional stimulatory effect. In contrast, in obese Zucker rats only 10 and 50 munits of insulin/ml had a stimulatory effect on glucose uptake, the magnitude of which was decreased by 50-70% when compared with either lean control group. Since under no experimental condition tested was an accumulation of free glucose in muscle-cell water observed, the data suggest an impairment of insulin-stimulated glucose transport across the muscle-cell membrane in obese Zucker rats. 3. The intracellular disposal of glucose in skeletal muscle of obese Zucker rats was also insulin-insensitive: even at insulin concentrations that clearly stimulated glucose uptake, no effect of insulin on lactate oxidation (nor an inhibitory effect on alanine release) was observed; [14C]glucose incorporation into skeletal-muscle lipids was stimulated by 50 munits of insulin/ml, but the rate was still only 10% of that observed in lean Zucker rats. 4. The data indicate that the skeletal muscle of obese Zucker rats is insulin-resistant with respect to both glucose-transport mechanisms and intracellular pathways of glucose metabolism, such as lactate oxidation. The excessive degree of insulin-insensitivity in skeletal muscle of obese Zucker rats may represent a causal factor in the development of the glucose intolerance in this species.  相似文献   

11.
We determined the effect of 48-h elevation of plasma free fatty acids (FFA) on insulin secretion during hyperglycemic clamps in control female Wistar rats (group a) and in the following female rat models of progressive beta-cell dysfunction: lean Zucker diabetic fatty (ZDF) rats, both wild-type (group b) and heterozygous for the fa mutation in the leptin receptor gene (group c); obese (fa/fa) Zucker rats (nonprediabetic; group d); obese prediabetic (fa/fa) ZDF rats (group e); and obese (fa/fa) diabetic ZDF rats (group f). FFA induced insulin resistance in all groups but increased C-peptide levels (index of absolute insulin secretion) only in obese prediabetic ZDF rats. Insulin secretion corrected for insulin sensitivity using a hyperbolic or power relationship (disposition index or compensation index, respectively, both indexes of beta-cell function) was decreased by FFA. The decrease was greater in normoglycemic heterozygous lean ZDF rats than in Wistar controls. In obese "prediabetic" ZDF rats with mild hyperglycemia, the FFA-induced decrease in beta-cell function was no greater than that in obese Zucker rats. However, in overtly diabetic obese ZDF rats, FFA further impaired beta-cell function. In conclusion, 1) the FFA-induced impairment in beta-cell function is accentuated in the presence of a single copy of a mutated leptin receptor gene, independent of hyperglycemia. 2) In prediabetic ZDF rats with mild hyperglycemia, lipotoxicity is not accentuated, as the beta-cell mounts a partial compensatory response for FFA-induced insulin resistance. 3) This compensation is lost in diabetic rats with more marked hyperglycemia and loss of glucose sensing.  相似文献   

12.
It has long been known that the central nervous system (CNS) directly affects pancreatic insulin release. This study was undertaken to determine the effect of the CNS on pancreatic insulin release in three-month-old female lean (Fa/Fa) and hyperinsulinemic obese (fa/fa) Zucker rats. Chloral hydrate (400 mg/kg) was used as the anesthetic agent. The in situ brain-pancreas perfusion model with intact pancreatic innervation was used in this investigation. The study measured insulin secretion in response to a 60-minute glucose stimulus (200 mg/dl). CNS-intact and CNS-functionally ablated obese and lean rats were used. During the 60-minute perfusion period significantly more insulin was released by pancreata from obese rats compared to those from lean rats. In lean rats, about twice as much insulin was released by pancreata from CNS-ablated rats than from CNS-intact rats (P < 0.05), demonstrating a CNS tonic inhibition of insulin secretion. In obese rats, there was no significant difference in insulin released by the pancreata of the CNS-intact and CNS-ablated rats. To determine if there was a masking effect of predominant PNS activity over the SNS in the CNS-intact obese rats, bilateral vagotomy was performed in a group of otherwise CNS-intact obese rats prior to the onset of perfusion. Tonic inhibition was still not observed in the CNS-vagotomized obese rats. In conclusion, hypersecretion of insulin in obese rats is partially due to diminished tonic sympathetic nervous system inhibition of insulin release. These results provide additional evidence regarding abnormal CNS control of insulin secretion in obese Zucker rats.  相似文献   

13.
Hepatic insulin resistance in the leptin-receptor defective Zucker fa/fa rat is associated with impaired glycogen synthesis and increased activity of phosphorylase-a. We investigated the coupling between phosphorylase-a and glycogen synthesis in hepatocytes from fa/fa rats by modulating the concentration of phosphorylase-a. Treatment of hepatocytes from fa/fa rats and Fa/? controls with a selective phosphorylase inhibitor caused depletion of phosphorylase-a, activation of glycogen synthase and stimulation of glycogen synthesis. The flux-control coefficient of phosphorylase on glycogen synthesis was glucose dependent and at 10 mm glucose was higher in fa/fa than Fa/? hepatocytes. There was an inverse correlation between the activities of glycogen synthase and phosphorylase-a in both fa/fa and Fa/? hepatocytes. However, fa/fa hepatocytes had a higher activity of phosphorylase-a, for a corresponding activity of glycogen synthase. This defect was, in part, normalized by expression of the glycogen-targeting protein, PTG. Hepatocytes from fa/fa rats had normal expression of the glycogen-targeting proteins G(L) and PTG but markedly reduced expression of R6. Expression of R6 protein was increased in hepatocytes from Wistar rats after incubation with leptin and insulin. Diminished hepatic R6 expression in the leptin-receptor defective fa/fa rat may be a contributing factor to the elevated phosphorylase activity and/or its high control strength on glycogen synthesis.  相似文献   

14.
The effect of dietary Platycodon grandiflorum on the improvement of insulin resistance and lipid profile was investigated in lean (Fa/-) and obese (fa/fa) Zucker rats, a model for noninsulin dependent diabetes mellitus. Dietary Platycodon grandiflorum feeding for 4 weeks resulted in a significant decrease in the concentration of plasma triglyceride in both lean and obese Zucker rats. Furthermore, dietary Platycodon grandiflorum markedly decreased both plasma cholesterol and fasting plasma insulin levels, and significantly decreased the postprandial glucose level at 30 min during oral glucose tolerance test in obese Zucker rats. Although there was no statistical significance, the crude glucose transporter 4 protein level of obese rats fed Platycodon grandiflorum tended to increase when compared with that of obese control rats. Therefore, the present results suggested that dietary Platycodon grandiflorum may be useful in prevention and improvement of metabolic disorders characterized by hyperinsulinemia states such as noninsulin dependent diabetes mellitus, syndrome X, and coronary artery disease.  相似文献   

15.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

16.
We examined the expressions of the prepro-orexin gene in the lateral hypothalamic area (LHA), the genes of the neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the arcuate nucleus (ARC), the orexin type 1 receptor (OX1R) gene in the ventromedial hypothalamic nucleus (VMH) and the orexin type 2 receptor (OX2R) gene in the paraventricular nucleus (PVN) in 6-, 12- and 18-week-old male lean (Fa/?) and obese (fa/fa) Zucker rats, using in situ hybridization histochemistry. The fa/fa rats showed hyperglycemia at 12- and 18-week-old. The prepro-orexin mRNA level in fa/fa rats at 18-week-old and the OX2R mRNA level in fa/fa rats at 12- and 18-week-old were significantly decreased compared to controls. The NPY mRNA levels in fa/fa rats at each time point were significantly increased compared to controls, but the POMC mRNA levels were decreased. Prepro-orexin and OX2R mRNA levels in fa/fa rats pretreated with insulin normalized to the levels found in Fa/? rats. These results suggest that the regulation of prepro-orexin gene expression might be independent of the regulation of the NPY and POMC genes in the ARC in fa/fa rats.  相似文献   

17.
Perfusions of isolated livers from genetically hyperlipoproteinemic Zucker fa/fa and normolipemic Zucker Fa/- rats are performed with loads of ]9,10-3H2] oleic acid and [1-14C] glycerol. The hepatic acylglycerols anabolism from these precursors is higher in the fa/fa rat than in the control Fa/- rats. Synthesis by esterification (of oleic acid) is more increased than de novo synthesis (from glycerol). The increase in lipid anabolism is due to an augmentation of the hepatic cellular mass, but this anabolism is not regulated in the same way than in the normal rat.  相似文献   

18.
R Bertin  M Andriamihaja  R Portet 《Biochimie》1984,66(7-8):569-572
Glycerokinase activity was measured in the brown and white adipose tissues compared with that in the liver obese Zucker rats adapted or not adapted to cold. In white adipose tissue total activity was low but higher in the fa/fa rats than in the Fa/ones; cold adaptation did not modify this activity. In brown adipose tissue specific activity was higher than in white; specific activity was twice as high in the fa/fa rats than in the Fa/-. Cold-adaptation induced an increase in the activity in the Fa rats and a decrease in the fa/fa rats. The results are discussed with regard to the cold-induced increase in the energetic efficiency of the tissue.  相似文献   

19.
The purpose of this study was to investigate the effect of endurance training (10 weeks) on previously reported alterations of lactate exchange in obese Zucker fa/fa rats. We used sarcolemmal vesicles to measure lactate transport capacity in control sedentary rats, Zucker (fa/fa), and endurance trained Zucker (fa/fa) rats. Monocarboxylate transporter (MCT) 1 and 4 content was measured in sarcolemmal vesicles and skeletal muscle. Training increased citrate synthase activity in soleus and in red tibialis anterior, and improved insulin sensitivity measured by intraperitoneal glucose tolerance test. Endurance training increased lactate influx in sarcolemmal vesicles at 1 mM of external lactate concentration and increased MCT1 expression on sarcolemmal vesicles. Furthermore, muscular lactate level was significantly decreased after training in red tibialis anterior and extensor digitorum longus. This study shows that endurance training improves impairment of lactate transport capacity that is found in insulin resistance state like obesity and type 2 diabetes.  相似文献   

20.
An fa allele of the leptin receptor gene (Lepr(fa)) of the Zucker fatty rat was introduced into the genome of the Spontaneously Diabetic Torii (SDT) rat, an inbred model of nonobese type 2 diabetes mellitus, through the 'Speed congenic method'. The newly established congenic strain of a SDT rat for Lepr(fa) was maintained by intercrossing between fa-heterozygous littermates, and the phenotypes related to obesity and diabetes were investigated till 32 wks of age. SDT fa/fa rats of both sexes exhibited obesity, adiposity and insulin resistance associated with hyperphagia from the loss of leptin action. Interestingly, they developed diabetes from 5 wks of age in males and 8 wks in females with the incidences reaching 100% at 16 wks in males and 73% at 32 wks in females. In contrast, heterozygous (+/fa) and wild-type (+/+) rats developed spontaneous nonobese diabetes in males from approximately 20 wks, but not in females, as with the original SDT rats. These results indicate that the fa gene accelerates the onset of diabetes in SDT rats by making adiposity and/or insulin resistance as potent risk factors for development of their diabetes. The SDT.Lepr(fa) congenic rat strain is expected to be a novel model of obesity-related diabetes and could be a useful tool for studies of the genetic backgrounds of diabetes in response to fa-induced obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号