首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioluminescence is broadly distributed in marine dinoflagellates and has been intensively studied in Lingulodinium (Gonyaulax) polyedra. In this species, bioluminescence is regulated in a circadian fashion; the enzyme (luciferase) and the luciferin (substrate)‐binding protein are synthesized and degraded on a daily basis. Synthesis of both proteins is regulated at the level of translation. The L. polyedra luciferase gene is composed of three contiguous domains that are greater than 75% identical at the nucleic acid level. Possible explanations for the high degree of sequence conservation include: (1) the domains evolved through a recent duplication event; (2) the sequence similarity is maintained by a molecular process such as gene conversion; or (3) there is a functional role associated with the primary nucleic acid sequence, such as in the translational regulation of luciferase expression. The phylogenetic relationship of dinoflagellates predicted from 18S rDNA genes provides a framework for examining the molecular evolution of the regulation of luciferase expression and of genes encoding luciferase and the luciferin‐binding protein. In particular, we are examining the evolution of the circadian rhythm of bioluminescence and of luciferase abundance, the presence/absence of the luciferin‐binding protein, and the molecular structure of the luciferase gene. We anticipate that this approach will distinguish between regions of the luciferase molecule that are conserved for enzyme function versus those concerned with the regulation of protein expression. In addition, it will provide insight into the evolution of the regulatory processes and pathways.  相似文献   

2.

Background  

Gene promoters fused to the firefly luciferase gene (luc) are useful for examining gene regulation in live transgenic mice and they provide unique views of functioning organs. The dynamics of gene expression in cells and tissues expressing luciferase can be observed by imaging this enzyme's bioluminescent oxidation of luciferin. Neural pathways involved in specific behaviors have been identified by localizing expression of immediate-early genes such as c-fos. A transgenic mouse line with luc controlled by the human c-fos promoter (fos::luc) has enabled gene expression imaging in brain slice cultures. To optimize imaging of immediate-early gene expression throughout intact mice, the present study examined fos::luc mice and a second transgenic mouse containing luc controlled by the human cytomegalovirus immediate-early gene 1 promoter and enhancer (CMV::luc). Because skin pigments and hair can significantly scatter light from underlying structures, the two transgenic lines were crossed with a hairless albino mouse (HRS/J) to explore which deep structures could be imaged. Furthermore, live anesthetized mice were compared with overdosed mice.  相似文献   

3.
Dinoflagellate bioluminescence systems operate with or without a luciferin binding protein, representing two distinct modes of light production. However, the distribution, diversity, and evolution of the luciferin binding protein gene within bioluminescent dinoflagellates are not well known. We used PCR to detect and partially sequence this gene from the heterotrophic dinoflagellate Noctiluca scintillans and a group of ecologically important gonyaulacoid species. We report an additional luciferin binding protein gene in N. scintillans which is not attached to luciferase, further to its typical combined bioluminescence gene. This supports the hypothesis that a profound re‐organization of the bioluminescence system has taken place in this organism. We also show that the luciferin binding protein gene is present in the genera Ceratocorys, Gonyaulax, and Protoceratium, and is prevalent in bioluminescent species of Alexandrium. Therefore, this gene is an integral component of the standard molecular bioluminescence machinery in dinoflagellates. Nucleotide sequences showed high within‐strain variation among gene copies, revealing a highly diverse gene family comprising multiple gene types in some organisms. Phylogenetic analyses showed that, in some species, the evolution of the luciferin binding protein gene was different from the organism's general phylogenies, highlighting the complex evolutionary history of dinoflagellate bioluminescence systems.  相似文献   

4.
Thein vivo pattern of firefly luciferase expression in transgenic plants   总被引:5,自引:0,他引:5  
Expression of the firefly luciferase gene in transgenic plants produces light emission patterns when the plants are supplied with luciferin. We explored whether inin vivo pattern of light emission truly reveals the pattern of luciferase gene expression or whether it reflects other parameters such as the availability of the substrate, luciferin, or the tissue-specific distribution of organelles in which luciferase was localized. The tissue-specific distribution of luciferase activity and thein vivo pattern of light were examined when the luciferase gene was driven by different promoters and when luciferase was redirected from the peroxisome, where it is normally targeted, to the chloroplast compartment. It was found that the distribution of luciferase activity closely correlated with the tissue-specific pattern of luciferase mRNA. However, thein vivo light pattern appeared to reflect not only tissue-specific distribution of luciferase activity, but also the pattern of luciferin uptake.  相似文献   

5.
Circadian disturbance of clock gene expression is a risk factor for diseases such as obesity, cancer, and sleep disorders. To study these diseases, it is necessary to monitor and analyze the expression rhythm of clock genes in the whole body for a long duration. The bioluminescent reporter enzyme firefly luciferase and its substrate d ‐luciferin have been used to generate optical signals from tissues in vivo with high sensitivity. However, little information is known about the stability of d ‐luciferin to detect gene expression in living animals for a long duration. In the present study, we examined the stability of a luciferin solution over 21 days. l ‐Luciferin, which is synthesized using racemization of d ‐luciferin, was at high concentrations after 21 days. In addition, we showed that bioluminescence of Period1 (Per1) expression in the liver was significantly decreased compared with the day 1 solution, although locomotor activity rhythm was not affected. These results showed that d ‐luciferin should be applied to the mouse within, at most, 7 days to detect bioluminescence of Per1 gene expression rhythm in vivo.  相似文献   

6.
Bioluminescence has gained favour in the last decade as an approach for observing tumours in vivo in a non‐destructive manner. This very sensitive technique is based on light emission by the reaction of luciferin with the enzyme luciferase, as measured by a photodetector. Ever since the development of recombinant tumour cell lines that have been engineered to produce luciferase, a vast number of experiments have been carried out examining tumour growth, tumour metastasis and the effect of therapeutic regimens in such cases. A primary stumbling block, however, is the relatively short circulatory half‐life of luciferin. In this paper, we propose the PEGylation of 6‐amino‐d ‐luciferin to extend its in vivo circulatory half‐life, thus making the possibility of long‐term observations in animals possible. The covalent attachment was through a carbamate linker that is known to hydrolyse in vivo, releasing the parent compound. Based on our studies, longer emission of the PEGylated luciferin was observed, as compared to free luciferin in mice bearing PC3 prostate tumours expressing luciferase. This result suggests that this reagent can be used in applications requiring extended monitoring of luciferase activation in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Interestingly, only the D-form of firefly luciferin produces light by luciferin–luciferase (L–L) reaction. Certain firefly luciferin analogues with modified structures maintain bioluminescence (BL) activity; however, all L-form luciferin analogues show no BL activity. To this date, our group has developed luciferin analogues with moderate BL activity that produce light of various wavelengths. For in vivo bioluminescence imaging, one of the important factors for detection sensitivity is tissue permeability of the number of photons emitted by L–L reaction, and the wavelengths of light in the near-infrared (NIR) range (700–900 nm) are most appropriate for the purpose. Some NIR luciferin analogues by us had performance for in vivo experiments to make it possible to detect photons from deep target tissues in mice with high sensitivity, whereas only a few of them can produce NIR light by the L–L reactions with wild-type luciferase and/or mutant luciferase. Based on the structure–activity relationships, we designed and synthesized here a luciferin analogue with the 5-allyl-6-dimethylamino-2-naphthylethenyl moiety. This analogue exhibited NIR BL emissions with wild-type luciferase (λmax = 705 nm) and mutant luciferase AlaLuc (λmax = 655 nm).  相似文献   

8.
Summary A group of vectors for luciferase expression in Bacillus subtilis was constructed. So far, only bacterial luciferases have been expressed in Bacillus, but in this study we wanted also to express genes encoding eukaryotic luciferases to perform direct comparisons of the light levels produced by the two different systems in B. subtilis. The vectors constructed can replicate both in Escherichia coli and B. subtilis, and the luciferase expression is strictly regulated due to the dual plasmid system used. Nearly a 100-fold increase in light production compared to previous results was achieved when genes encoding bacterial luciferase were inserted into the constructs and transformed into B. subtilis. An additional tenfold increase in light production was obtained when luciferase genes from the North American firefly (Photinus pyralis) or a click beetle (Pyrophorus plagiophtalamus) were introduced in a similar fashion into B. subtilis. Measurement of the light emission was performed without disruption of bacterial cells in a real-time manner, which is a common feature when working with all of these constructions. Structures of the shuttle vector constructs and results from light emission measurements are presented.  相似文献   

9.
10.
Nass N  Scheel D 《Planta》2001,212(2):149-154
In-vivo imaging of transgenic tobacco plants (Nicotiana tobacum L.) expressing firefly luciferase under the control of the Arabidopsis phenylalanine ammonia-lyase 1 (PAL1)-promoter showed that luciferase-catalyzed light emission began immediately after the substrate luciferin was sprayed onto the leaves and reached a plateau phase after approximately 60 min. This luminescence could easily be detected for up to 24 h after luciferin application although the light intensity declined continuously during this period. A strong and rapid increase in light emission was observed within the first minutes after wounding of luciferin-sprayed leaves. However, these data did not correlate with luciferase activity analysed by an in-vitro enzyme assay. In addition, Arabidopsis plants expressing luciferase under the control of the constitutive 35S-promoter showed similar wound-induced light emission. In experiments in which only parts of the leaves were sprayed with luciferin solutions, it was shown that increased uptake of luciferin at the wound site and its transport through vascular tissue were the main reasons for the rapid burst of light produced by preformed luciferase activity. These data demonstrate that there are barriers that restrict luciferin entry into adult plants, and that luciferin availability can be a limiting factor in non-invasive luciferase assays. Received: 11 March 2000 / Accepted: 16 May 2000  相似文献   

11.
Recombinant bacteriophages provide efficient delivery systems for introducing reporter genes into specific bacterial hosts. We have constructed mycobacteriophage L5 recombinants carrying the firefly luciferase gene inserted into the tRNA region of the phage genome. Infection of Mycobacterium smegmatis by these phages results in expression of the luciferase gene and light emission. Fortuitously, the luciferase gene is expressed continuously in lysogens surviving infection. Synthesis of luciferase from a mycobacterial promoter created by cloning enables the detection of extremely small numbers of M. smegmatis cells. These reporter phages can be used to discriminate between drug-sensitive and drug-resistant strains of M. smegmatis, and may provide tools for the rapid identification and classification of antimycobacterial agents.  相似文献   

12.
《Luminescence》2004,19(1):8-20
Bioluminescence, the conversion of chemical energy into light in living organisms, is dependent on two principal components, an enzyme luciferase and the substrate luciferin. In beetles, the enzyme luciferase has been extensively studied, with signi?cant enzymological, sequence and structural data now available. Furthermore, the enzyme has been employed in a remarkable number of important applications, from microbial detection and medical imaging to GM gene expression studies. However, there is little information regarding the biosynthesis of beetle luciferin, and here we review the literature and speculate as to its evolutionary origins. Luciferin consists of a benzothiazole moiety attached to a thiazole carboxylic acid moiety, the former being rarely observed in nature but the latter being observed in a broad range of biologically derived molecules. Benzothiazoles are, however, observed in melanogenesis and we speculate as to whether this may be relevant to the understanding of luciferin biosynthesis in beetles. This review examines recent novel insights into beetle luciferin recycling and we assess a range of possible biosynthetic mechanisms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.

Background  

Bioluminescent tumor cell lines are experimental tools of major importance for cancer investigation, especially imaging of tumors in xenografted animals. Stable expression of exogenous luciferase in tumor cells combined to systemic injection of luciferin provides an excellent signal/background ratio for external optical imaging. Therefore, there is a need to rationalize and speed up the production of luciferase-positive tumor cell lines representative of multiple tumor phenotypes. For this aim we have designed a fusion gene linking the luciferase 2 protein to the c-terminus of a truncated form of the rat CD2 protein (tCD2-luc2). To allow simultaneous assessment of the wild-type luciferase 2 in a context of tCD2 co-expression, we have made a bicistronic construct for concomitant but separate expression of these two proteins (luc2-IRES-tCD2). Both the mono- and bi-cistronic constructs were transduced in lymphoid and epithelial cells using lentiviral vectors.  相似文献   

14.
Transformed rice plants of var `TN1' were regenerated from immature embryos following particle bombardment with a construct containing the firefly luciferase gene as a reporter gene and the hygromycin resistance gene as a selectable marker. Expression of the luciferase gene in the presence of the substrate luciferin was visualised in the calli derived from bombarded immature embryos and in the leaves and roots of the regenerated transformed plants using a low light imaging system (luminograph). Embryogenic callus proliferation and plant regeneration were unaffected by luciferin treatment and luminograph screening. The quantitative Luc assay using samples of leaf tissue from the segregating generations gave early information about the homozygous and hemizygous state of the luc transgene. Received: 25 August 1998 / Revision received: 2 November 1998 / Accepted: 13 November 1998  相似文献   

15.
Temporal and spatial regulation of genes mediated by tissue‐specific promoters and conditional gene expression systems provide a powerful tool to study gene function in health, disease, and during development. Although transgenic mice expressing the Cre recombinase in the gastric epithelium have been reported, there is a lack of models that allow inducible and reversible gene modification in the stomach. Here, we exploited the gastrointestinal epithelium‐specific expression pattern of the three trefoil factor (Tff) genes and bacterial artificial chromosome transgenesis to generate a novel mouse strain that expresses the CreERT2 recombinase and the reverse tetracycline transactivator (rtTA). The Tg(Tff1‐CreERT2;Tff2‐rtTA;Tff3‐Luc) strain confers tamoxifen‐inducible irreversible somatic recombination and allows simultaneous doxycycline‐dependent reversible gene activation in the gastric epithelium of developing and adult mice. This strain also confers luciferase activity to the intestinal epithelium to enable in vivo bioluminescence imaging. Using fluorescent reporters as conditional alleles, we show Tff1‐CreERT2 and Tff2‐rtTA transgene activity in a partially overlapping subset of long‐term regenerating gastric stem/progenitor cells. Therefore, the Tg(Tff1‐CreERT2;Tff2‐rtTA;Tff3‐Luc) strain can confer intermittent transgene expression to gastric epithelial cells that have undergone previous gene modification, and may be suitable to genetically model therapeutic intervention during development, tumorigenesis, and other genetically tractable diseases. Birth Defects Research (Part A) 106:626–635, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Ionic liquids (IL) are used as a new class of solvents for various reactions. Especially using IL in biocatalysis in an aqueous milieu has attracted considerable attention because enzymes show remarkable differences in their catalytic features in IL‐containing reaction media. Firefly luciferase is widely used in many analytical techniques, because light production of firefly luciferase is one of the most sensitive analytical measures in the ultrasensitive detection of adenosine‐5′‐triphosphate, e.g. for measuring microbial contamination and monitoring gene expression, as well as for monitoring tumor growth and metastasis in whole animals. Firefly luciferase is an unstable enzyme and its inactivation can lead to low sensitivity in the above‐mentioned assays. The present study addresses the comparative influence of six different water‐immiscible IL, the 3‐methylimidazolium derivatives [BMIM]Cl, [HMIM]Cl, [BMIM]Br, [EMIM]Br, [HMIM]Br, and [BMIM]BF4, on the kinetic properties, structural stability, and function of firefly luciferase from Photinus pyralis using circular dichroism, fluorescence spectroscopy, and a bioluminescence assay. The incubation of luciferase with various IL showed that, with the exception of [BMIM]BF4, the activity and stability of luciferase was considerably increased in the presence of IL, compared to luciferase in aqueous medium. Moreover, Km for the substrate adenosine‐5′‐triphosphate in the presence of IL (except for [BMIM]BF4) decreased while Km for luciferin remained constant.  相似文献   

17.
Abstract

The development of techniques for detection and tracking of microorganisms in natural environments has been accelerated by the requirement for assessment of the risks associated with environmental release of genetically engineered microbial inocula. Molecular marker systems are particularly appropriate for such studies and luminescence-based markers have the broadest range of applications, involving the introduction of prokaryotic (lux) or eukaryotic (luc) genes for the enzyme luciferase.

Lux or luc genes can be detected on the basis of unique DNA sequences by gene probing and PCR amplification, but the major advantage of luminescence-based systems is the ability to detect light emitted by marked organisms or by luciferase activity in cell-free extracts. Luminescent colonies can be detected by eye, providing distinction from colonies of indigenous organisms, and the sensitivity of plate counting can be increased greatly by CCD imaging. Single cells or microcolonies of luminescent organisms can also be detected in environmental samples by CCD image-enhanced microscopy, facilitating study of their spatial distribution. The metabolic activity of luminescence-marked populations can be quantified by luminometry and does not require extraction of cells or laboratory growth. Metabolic activity, and potential activity, of marked organisms therefore can be measured during colonization of soil particles and plant material in real time without disturbing the colonization process.

In comparison with traditional activity techniques, luminometry provides significant increases in sensitivity, accuracy, and, most importantly, selectivity, as activity can be measured in the presence of indigenous microbial communities. The sensitivity, speed, and convenience of luminescence measurements make this a powerful technique that is being applied to the study of an increasingly wide range of ecological problems. These include microbial survival and recovery, microbial predation, plant pathogenicity, phylloplane and rhizosphere colonization and reporting of gene expression in environmental samples.  相似文献   

18.
In vivo bioluminescence imaging   总被引:3,自引:0,他引:3  
In vivo bioluminescent imaging (BLI) is a versatile and sensitive tool that is based on detection of light emission from cells or tissues. Bioluminescence, the biochemical generation of light by a living organism, is a naturally occurring phenomenon. Luciferase enzymes, such as that from the North American firefly (Photinus pyralis), catalyze the oxidation of a substrate (luciferin), and photons of light are a product of the reaction. Optical imaging by bioluminescence allows a low-cost, noninvasive, and real-time analysis of disease processes at the molecular level in living organisms. Bioluminescence has been used to track tumor cells, bacterial and viral infections, gene expression, and treatment response. Bioluminescence in vivo imaging allows longitudinal monitoring of a disease course in the same animal, a desirable alternative to analyzing a number of animals at many time points during the course of the disease. We provide a brief introduction to BLI technology, specific examples of in vivo BLI studies investigating bacterial/viral pathogenesis and tumor growth in animal models, and highlight some future perspectives of BLI as a molecular imaging tool.  相似文献   

19.
《Luminescence》2003,18(4):218-223
Studies were performed to compare green ?uorescent protein (GFP)‐transfected and ?re?y luciferase (Luc)‐transfected MCF‐7 human breast tumour cells both in vitro and in vivo. For in vitro studies, cells were serially diluted in 96‐well microplates and analysed using a NightOwl LB 981 Molecular Light Imager and a Victor multilabel reader. For in vivo studies, nude mice were injected either intraperitoneally, intravenously or subcutaneously with transfected cells and then imaged using the NightOwl Imager after intraperitoneal injection of d ‐luciferin for Luc tumours, or excitation at 470 nm for GFP tumours. In vitro imaging studies revealed that both GFP and Luc transfectants were quanti?able. However, the Luc‐transfected cells were detectable at a signi?cantly lower concentration compared to GFP transfectants. In vivo studies demonstrated that GFP‐transfected tumours were detectable as subcutaneous and intraperitoneal tumours but not as deep tissue lesions, whereas Luc‐transfected tumours were detectable as subcutaneous and intraperitoneal tumours and as deep tissue lesions resulting from intraperitoneal or intravenous inoculation. These ?ndings demonstrate that GFP‐transfected cells may be useful for imaging studies of super?cial tumours where both excitation and emission wavelengths are able to penetrate tissues, whereas luciferase‐transfected cells appear superior for imaging studies of primary and metastatic tumours in distant sites and deep tissues. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
E M Thompson  S Nagata  F I Tsuji 《Gene》1990,96(2):257-262
The small marine ostracod crustacean, Vargula hilgendorfii, produces a bright blue luminous secretion which is ejected into seawater. The luminescence is due to a simple enzyme-catalyzed reaction involving only luciferase, luciferin (substrate), and molecular oxygen. Thus, V. hilgendorfii luciferase (VL) should be useful as a reporter enzyme in studies of gene expression in mammalian cells. Expression plasmids consisting of VL cDNA (vl) linked to the promoters simian virus 40 early region, Rous sarcoma virus long terminal repeat, human elongation factor, or mouse granulocyte colony-stimulating factor were introduced into a series of mammalian cell lines. Following transfection, VL activities in cell extracts and culture media were determined by a rapid light emission assay with V. hilgendorfii luciferin. Parallel experiments were carried out with the chloramphenicol acetyltransferase (CAT)-encoding gene. In all cell lines tested, VL was secreted, allowing the reporter activity to be determined directly from a small aliquot of the culture medium. The results indicate that the secreted VL enzyme is superior to CAT, firefly luciferase, and bacterial luciferase as a convenient and versatile indicator of gene expression in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号