首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous chemical and structural studies have proposed a major role for Asp-49 in the calcium-mediated activation of phospholipases A2. Recently, a new class of phospholipases A2 has been characterized with a lysine in the place of aspartate at position 49 (Maraganore, J. M., Merutka, G., Cho, W., Welches, W., Kézdy, F. J., and Heinrikson, R. L. (1984) J. Biol. Chem. 259, 13839-13843; Maraganore, J. M., and Heinrikson, R. L. (1986) J. Biol. Chem. 261, 4797-4804). Although both the Lys-49 and Asp-49 phospholipases require calcium for enzymatic activity, the Lys-49 enzymes appear to be unique in their ability to bind phospholipids prior to undergoing calcium-mediated activation. We have successfully crystallized the Lys-49 phospholipase A2 from the venom of the American cottonmouth water moccasin (Agkistrodon piscivorus piscivorus). The crystals are tetragonal, the space group being P4(1)2(1)2 or P4(3)2(1)2 with unit cell dimensions of a = b = 71.05 A, and c = 57.76 A. There is only one molecule in the asymmetric unit and the crystals provide good quality diffraction data to 2.2 A.  相似文献   

2.
The aspartyl residue at position 49 in phospholipases A2 (PLA) has been viewed as a component of the catalytic apparatus because of its involvement in binding the essential cofactor, calcium. We recently discovered a new class of PLA's in which, among other changes in highly invariant residues, Asp-49 is replaced by a lysine (Maraganore et al. (1984) J. Biol. Chem. 259, 13839). These Lys-49 PLA's are also calcium-dependent, but, in contrast to the Asp-49 enzymes, they bind phospholipid strongly in the absence of calcium. Lys-49 PLA's are, therefore, ideal for studying structural and mechanistic aspects of these enzymes. Attempts to modify Lys-49 with the amino group-specific reagent, trinitrobenzenesulfonic acid (TNBS) led to the inactivation of the PLA, but reaction occurred not as expected at position 49, but at Lys-53. These findings lead us to propose a model, applicable to PLA's in general, in which cationic side chains at position 53 in these enzymes participate in phospholipid binding on the path to formation of the catalytic complex. This model serves to explain a number of unresolved observations in the current literature relating to enzyme-substrate interactions in the PLA's.  相似文献   

3.
Chemical, genetic, and structural studies have defined a critical role for Asp-49 in the calcium-mediated activation of extracellular phospholipases A2 (PLA2). In 1984, a new class of PLA2 was isolated in which this invariant aspartate was replaced with a lysine (Maragnore, J.M., Merutka, G., Cho, W., Welches, W., Kezdy, F.J., and Heinrikson, R.L. (1984) J. Biol. Chem. 259, 13839-13843; Maragnore, J.M., and Heinrikson, R.L. (1986) J. Biol. Chem. 261, 4797-4804). The enzymatic activity of Lys-49 PLA2s has been questioned based on biochemical, mutational, and structural studies (van den Bergh, C.J., Slotboom, A.J., Verheij, H.M., and de Haas, G.H. (1988) Eur. J. Biochem. 176, 353-357). In this paper, we describe the structures of two crystal forms of the Lys-49 PLA2 isolated from the venom of Agkistridon piscivorus piscivorus. The refined models, along with complementary biochemical analysis, clarify the structural basis for the enzymatic inactivity of Lys-49 proteins.  相似文献   

4.
The role of aspartic acid-49 (Asp-49) in the active site of porcine pancreatic phospholipase A2 was studied by recombinant DNA techniques: two mutant proteins were constructed containing either glutamic acid (Glu) or lysine (Lys) at position 49. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions, in particular for the lysine mutant, but the affinity for substrate analogues is hardly affected. Extensive purification of naturally occurring Lys-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein that was nearly inactive. Inhibition studies showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself has no enzymatic activity. Our results indicate that Asp-49 is essential for the catalytic action of phospholipase A2. The importance of Asp-49 was further evaluated by comparison of the primary sequences of 53 phospholipases A2 and phospholipase homologues showing that substitutions at position 49 are accompanied by structural variations of otherwise conserved residues. The occurrence of several nonconserved substitutions appeared to be a general characteristic of nonactive phospholipase A2 homologues.  相似文献   

5.
In order to probe the role of Asp-49 in the active site of porcine pancreatic phospholipase A2 two mutant proteins were constructed containing either Glu or Lys at position 49. Their enzymatic activities and their affinities for substrate and for Ca2+ ions were examined in comparison with the native enzyme. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions in particular for the lysine mutant but the affinity for substrate analogues is hardly affected. Extensive purification of [Lys49]phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein which was 4000 times less active than the basic [Asp49]phospholipase A2 from this venom. Inhibition studies with p-bromophenacyl bromide showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself is inactive. The results obtained both with the porcine pancreatic phospholipase A2 mutants and with the native venom enzymes show that Asp-49 is essential for the catalytic action of phospholipase A2.  相似文献   

6.
A basic, dimeric myotoxic protein, myotoxin II, purified from Bothrops asper venom has a similar molecular weight and is immunologically cross-reactive with antibodies raised to previously isolated B. asper phospholipases A2, except that it shows only 0.1% of the phospholipase activity against L-alpha-phosphatidylcholine in the presence of Triton X-100. Its 121 amino acid sequence, determined by automated Edman degradation, clearly identifies it as a Lys-49 phospholipase A2. Key amino acid differences between myotoxin II and phospholipase active proteins in the Ca2(+)-binding loop region, include Lys for Asp-49, Asn for Tyr-28, and Leu for Gly-32. The latter substitution has not previously been seen in Lys-49 proteins. Other substitutions near the amino terminus (Leu for Phe-5 and Gln for several different amino acids at position 11) may prove useful for identifying other Lys-49 proteins in viperid and crotalid venoms. Myotoxin II shows greater sequence identity with other Lys-49 proteins from different snake venoms (Agkistrodon piscivorus piscivorus, Bothrops atrox, and Trimeresurus flavoviridis) than with another phospholipase A2 active Asp-49 molecule isolated from the same B. asper venom. This work demonstrates that phospholipase activity per se, is not required in phospholipase molecules for either myotoxicity or edema inducing activities.  相似文献   

7.
A basic monomeric phospholipase A2 from the venom of the American water moccasin, Agkistrodon piscivorus piscivorus, undergoes Ca2+-dependent, autocatalytic acylation during the course of hydrolysis of both model and natural phospholipid substrates. Acylation occurs at 2 lysine residues, Lys-7 and Lys-10, in the NH2-terminal alpha-helical segment of the enzyme, and when both positions are fully derivatized, the stable bisacylphospholipase A2 becomes a dimer in solution. The acylated enzyme is fully activated toward monomolecular layers of lecithins. Similar studies applied to the monomeric phospholipases A2 from porcine pancreas and from the venom of Agkistrodon contortrix contortrix also showed irreversible activation of the enzymes by substrate with the same kinetic consequences and formation of dimers. Acylation thus enables these enzymes to overcome the lag period observed under such conditions with native monomeric phospholipases, a phenomenon referred to as interfacial activation. Activation of the enzyme by acylation potentiates the phospholipase for interfacial recognition via formation of a dimeric enzyme. The naturally occurring phospholipase A2 dimer from Crotalus atrox venom displays no lag in the hydrolysis of lecithin monolayers nor does it undergo substrate level acylation. These facts support our proposal that dimerization concomitant with acylation is responsible for the large rate enhancements seen in the hydrolysis of aggregated phospholipids by monomeric phospholipases. Our findings demonstrate for the first time a chemical mechanism for interfacial activation of and interfacial recognition by phospholipases A2.  相似文献   

8.
S-Adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine to form adenosine and homocysteine. On the bases of crystal structures of the wild type enzyme and the D244E mutated enzyme complexed with 3'-keto-adenosine (D244E.Ado*), we have identified the important amino acid residues, Asp-130, Lys-185, Asp-189, and Asn-190, for the catalytic reaction and have proposed a catalytic mechanism (Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (2000) J. Biol. Chem. 275, 32147-32156). To confirm the proposed catalytic mechanism, we have made the D130N, K185N, D189N, and N190S mutated enzymes and measured the catalytic activities. The catalytic rates (k(cat)) of D130N, K185N, D189N, and N190S mutated enzymes are reduced to 0.7%, 0.5%, 0.1%, and 0.5%, respectively, in comparison with the wild type enzyme, indicating that Asp-130, Lys-185, Asp-189, and Asn-190 are involved in the catalytic reaction. K(m) values of the mutated enzymes are increased significantly, except for the N190S mutation, suggesting that Asp-130, Lys-185, and Asp-189 participate in the substrate binding. To interpret the kinetic data, the oxidation states of the bound NAD molecules of the wild type and mutated enzymes were measured during the catalytic reaction by monitoring the absorbance at 340 nm. The crystal structures of the WT and D244E.Ado*, containing four subunits in the crystallographic asymmetric unit, were re-refined to have the same subunit structures. A detailed catalytic mechanism of AdoHcyase has been revealed based on the oxidation states of the bound NAD and the re-refined crystal structures of WT and D244E.Ado*. Lys-185 and Asp-130 abstract hydrogen atoms from 3'-OH and 4'-CH, respectively. Asp-189 removes a proton from Lys-185 and produces the neutral N zeta (-NH(2)), and Asn-190 facilitates formation of the neutral Lys-185. His-54 and His-300 hold and polarize a water molecule, which nucleophilically attacks the C5'- of 3'-keto-4',5'-dehydroadenosine to produce 3'-keto-Ado.  相似文献   

9.
Summary 1H, 15N and 13C resonance assignments are presented for the group II phospholipase A2 (PLA2) from Agkistrodon piscivorus piscivorus. The secondary structure of the enzyme has been inferred from an analysis of coupling constants, interproton distances, chemical shifts, and kinetics of amide exchange. Overall, the secondary structure of this PLA2 is similar to the crystal structure of the homologous group II human nonpancreatic secretory phospholipase [Scott, D.L., White, S.P., Browning, J.L., Rosa, J.J., Gelb, M.H. and Sigler, P.B. (1991) Science, 254, 1007–1010]. In the group I enzyme from porcine pancreas, the amino-terminal helix becomes fully ordered in the ternary complex of enzyme, lipid micelles and inhibitor. The formation of this helix is thought to be important for the increase in activity of phospholipases on aggregated substrates [Van den Berg, B., Tessari, M., Boelens, R., Dijkman, R., De Haas, G.H., Kaptein, R. and Verheij, H.M. (1995) Nature Struct. Biol., 2, 402–406]. However, the group II enzyme from Agkistrodon piscivorus piscivorus possesses a defined and well-positioned aminoterminal helix in the absence of substrate. Therefore, there is a clear difference between the conformations of group I and group II enzymes in solution. These conformational differences suggest that formation of the amino-terminal helix is a necessary, but not sufficient, step in interfacial activation of phospholipases.Abbreviations PLA2 phospholipase A2 - App-D49 phospholipase from Agkistrodon piscivorus piscivorus - NOE nuclear Overhauser effect  相似文献   

10.
Lathrop B  Gadd M  Biltonen RL  Rule GS 《Biochemistry》2001,40(11):3264-3272
Changes in the affinity of calcium for phospholipase A2 from Agkistrodon piscivorus piscivorus during activation of the enzyme on the surface of phosphatidylcholine vesicles have been investigated by site-directed mutagenesis and fluorescence spectroscopy. Changes in fluorescence that occur during lipid binding and subsequent activation have been ascribed to each of the three individual Trp residues in the protein. This was accomplished by generating a panel of mutant proteins, each of which lacks one or more Trp residues. Both Trp21, which is found in the interfacial binding region, and Trp119 show changes in fluorescence upon protein binding to small unilamellar zwitterionic vesicles or large unilamellar vesicles containing sufficient anionic lipid. Trp31, which is near the Ca2+ binding loop, exhibits little change in fluorescence upon lipid bilayer binding. A change in the fluorescence of the protein also occurs during activation of the enzyme. These changes arise from residue Trp31 as well as residues Trp21 and Trp119. The calcium dependence of the fluorescence change of Trp31 indicates that the affinity of the enzyme for calcium increases at least 3 orders of magnitude upon activation. These studies suggest either that a change in conformation of the enzyme occurs upon activation or that the increase in calcium affinity reflects formation of a ternary complex of calcium, enzyme, and substrate.  相似文献   

11.
A phospholipase A2 was isolated from the venom of the mexican beaded lizard (Heloderma horridum horridum) by phenyl-Sepharose chromatography followed by Sephadex G-75 gel filtration and two additional steps on ion exchange resins (DE-32 cellulose). The affinity chromatographic method (PC-Sepharose 4B) reported for the isolation of other phospholipases [Rock, Ch. O., & Snyder, F. (1975) J. Biol. Chem. 250, 2564-2566; King, T. P., Alagon, A. C., Kwan, J., Sobotka, A. K., & Lichteinstein, L. M. (1983) Mol. Immunol. 20, 297-308; King, T. P., Kochoumian, L., & Joslyn, A. (1984) Arch. Biochem. Biophys. 230, 1-12] was uneffective for the separation of this enzyme. The monomeric form of the Heloderma phospholipase has an apparent Mr of 18 000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 19 060 as calculated from amino acid analysis. It also contains on the order of 7% carbohydrates per mole of enzyme. The N-terminal amino acid sequence was shown to be very different from that of phospholipases isolated from mammalian pancreas and crotalids and elapids snake venoms. The first 39 amino acid residues at the N-terminal region have 56% homology with bee venom phospholipase but differ from the bee phospholipase in that its isoelectric point is acidic (pI = 4.5), instead of basic, and it has approximately 50 amino acid residues more in the molecule. The specificity of the enzyme is mainly A2 type with possible residual B-type activity. The enzymatic activity is Ca2+-dependent. Half-cystine alignment of the Heloderma phospholipase sequence with those of other known phospholipases shows the lack of an octadecapeptide at the N-terminal region, the existence of an extra hexapeptide at positions 42-47, and an exact correspondence of Heloderma Gly-12, Gly-14, His-36, and Asp-37 with Gly-30, Gly-32, His-48, and Asp-49 from other phospholipases shown to be important for Ca2+ binding (( Dijkstra, B. W., Drenth, J., Kalk, K. H., & Vandermaalen, P. J. (1978) J. Mol. Biol. 124, 53-60 )).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

13.
The crystal structure of a lysine 49 variant phospholipase A2 (K49 PLA2) has been determined at 2.0-A resolution. This particular phospholipase A2, purified from the venom of the eastern cottonmouth (Agkistrodon piscivorus piscivorus), a North American pit viper, differs significantly from others studied crystallographically because of replacement of the aspartate residue at position 49, whose side chain is important in calcium binding, by lysine. The crystallographic analysis of K49 PLA2 was undertaken to assess the structural ramifications of this substitution, particularly as they affect the binding mechanism of both the calcium cofactor and the phospholipid substrate. The protein crystals are tetragonal, space group P4(1)2(1)2, with unit cell dimensions of a = b = 71.7 (1) and c = 57.8 (3) A. Preliminary phases were obtained by molecular replacement techniques with a search model derived from the refined 2.5-A structure of a rattle-snake venom phospholipase A2 (Brunie, S., Bolin, J., Gewirth, D., and Sigler, P. B. (1985) J. Biol. Chem. 260, 9742-9749). The starting model gave an initial crystallographic RF of 0.526 (RF = sigma parallel to Fo /-/ Fc parallel to /sigma/Fo/). The structure was refined against all data to 2.0-A resolution. The final RF is 0.158. The final model includes 150 discrete water molecules. The K49 PLA2 model is composed primarily of alpha-helices joined by loops, some of which are quite extensive. Although dissimilarities are observed in the loop regions, the helical portions are very similar to those in other known phospholipase A2 structures. The proposed catalytic center (His48, Tyr73, and Asp99) is also structurally conserved. The region in K49 PLA2 corresponding to the calcium-binding site in other phospholipases A2 is occupied by the epsilon-amino group of lysine 49.  相似文献   

14.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

15.
Stahelin RV  Cho W 《Biochemistry》2001,40(15):4672-4678
The roles of cationic, aliphatic, and aromatic residues in the membrane association and dissociation of five phospholipases A(2) (PLA(2)), including Asp-49 PLA(2) from the venom of Agkistrodon piscivorus piscivorus, acidic PLA(2) from the venom of Naja naja atra, human group IIa and V PLA(2)s, and the C2 domain of cytosolic PLA(2), were determined by surface plasmon resonance analysis. Cationic interfacial binding residues of A. p. piscivorus PLA(2) (Lys-10) and human group IIa PLA(2) (Arg-7, Lys-10, and Lys-16), which mediate electrostatic interactions with anionic membranes, primarily accelerate the membrane association. In contrast, an aliphatic side chain of the C2 domain of cytosolic PLA(2) (Val-97), which penetrates into the hydrophobic core of the membrane and forms hydrophobic interactions, mainly slows the dissociation of membrane-bound protein. Aromatic residues of human group V PLA(2) (Trp-31) and N. n. atra PLA(2) (Trp-61, Phe-64, and Tyr-110) contribute to both membrane association and dissociation steps, and the relative contribution to these processes depends on the chemical nature and the orientation of the side chains as well as their location on the interfacial binding surface. On the basis of these results, a general model is proposed for the interfacial binding of peripheral proteins, in which electrostatic interactions by ionic and aromatic residues initially bring the protein to the membrane surface and the subsequent membrane penetration and hydrophobic interactions by aliphatic and aromatic residues stabilize the membrane-protein complexes, thereby elongating the membrane residence time of protein.  相似文献   

16.
The monomer-dimer equilibria of the dimeric phospholipases A2 from Crotalus atrox and Agkistrodon piscivorus piscivorus venoms were examined chromatographically as a function of pH and in the presence versus absence of the essential cofactor, calcium ion. At neutral pH without calcium, the subunits of both enzymes reequilibrated sufficiently slowly that dimer and monomer were separated by size exclusion chromatography. At pH 4.2 and lower, the dimers underwent rapid dissociation and reassociation, eluting as single broad peaks whose position as a function of applied protein concentration could be analyzed to determine association constants using an algorithm that estimates these values based on elution positions. Lowering the pH from 7.0 to 4.2 increased the self-association constant of the C. atrox enzyme by 1 order of magnitude and that of the A. p. piscivorus dimer by a factor of 3. Calcium ion, an essential cofactor of phospholipase A2, converted the kinetic behavior of the dimers at neutral pH from slow to virtually instantaneous on the time scale of the chromatography runs, 40 min. Calcium ion also altered the thermodynamic stability of the enzymes; the association constant of A. p. piscivorus phospholipase A2 in neutral pH buffer was reduced by approximately 2 orders of magnitude, whereas that of C. atrox was increased by a factor of 6. The structural basis for the disparate effects of calcium ion on these two acidic, dimeric venom phospholipases A2 is uncertain. This study illustrates the importance of calcium ion and pH on the solution behavior of the dimeric members of this class of enzymes.  相似文献   

17.
Y Snitko  S K Han  B I Lee  W Cho 《Biochemistry》1999,38(24):7803-7810
To identify the residues essential for interfacial binding and substrate binding of human pancreatic phospholipase A2 (hpPLA2), several ionic residues in the putative interfacial binding surface (R6E, K7E, K10E, and K116E) and substrate binding site (D53K and K56E) were mutated. Interfacial affinity of these mutants was measured using anionic polymerized liposomes, and their enzymatic activity was measured using various substrates including phospholipid monomers, zwitterionic and anionic micelles, and anionic polymerized mixed liposomes. Similar mutations (R6E, K10E, K56E, and K116E) were made to porcine pancreatic phospholipase A2 (ppPLA2), and the properties of mutants were measured by the same methods. Results indicate that hpPLA2 and ppPLA2 have similar interfacial binding mechanisms in which cationic residues in the amino terminus and Lys-116 in the carboxy terminus are involved in binding to anionic lipid surfaces. Small but definite differences between the two enzymes were observed in overall interfacial affinity and activity and the effects of the mutations on interfacial enzyme activity. The interfacial binding of hpPLA2 and ppPLA2 is distinct from that of bovine pancreatic phospholipase A2 in that Lys-56 is involved in the interfacial binding of the latter enzyme. The unique phospholipid headgroup specificity of hpPLA2 derives from the presence of Asp-53 in the substrate binding site. This residue appears to participate in stabilizing electrostatic interactions with the cationic ethanolamine headgroup, hence the phosphatidylethanolamine preference of hpPLA2. Taken together, these studies reveal the similarities and the differences in the mechanisms by which mammalian pancreatic phospholipases A2 interact with lipid aggregates and perform interfacial catalysis.  相似文献   

18.
A basic (pI = 10.2) phospholipase A2 of the venom of the snake Agkistrodon halys blomhoffii is one of a few phospholipases A2 capable of hydrolyzing the phospholipids of Escherichia coli killed by a bactericidal protein purified from human or rabbit neutrophil granules. We have shown that modification of as many as 4 mol of lysine per mole of the phospholipase A2, either by carbamylation or by reductive methylation [Forst, S., Weiss, J., & Elsbach, P. (1982) J. Biol. Chem. 257, 14055-14057], had no effect on catalytic activity toward extracted E. coli phospholipids or the phospholipids of autoclaved E. coli. In contrast, modification of 1 mol of lysine per mole of enzyme substantially reduced activity toward the phospholipids of E. coli killed by the neutrophil protein. To explore further the role of lysines in the function of this phospholipase A2, we determined the amino acid sequence of the enzyme and the incorporation of [14C]cyanate into individual lysines when, on average, 1 lysine per molecule of enzyme had been carbamylated. After incorporation of approximately 1 mol of [14C]cyanate per mole of protein, the phospholipase A2 was reduced, alkylated, and exhaustively carbamylated with unlabeled cyanate. The amino acid sequence was determined of the NH2-terminal 33 amino acids of the holoprotein and of peptides isolated after digestion with trypsin and Staphylococcus aureus V-8 protease. The protein contains 122 amino acid residues, 17 of which are lysines. The NH2-terminal region is unique among more than 30 phospholipases A2 previously sequenced because of its high content of basic residues (His-1, Arg-6, and Lys-7, -10, -11, and -15).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Recent studies from this and other laboratories have resulted in the cloning and sequencing of hexokinases from a variety of tissues including yeast, human kidney, rat brain, rat liver, and mouse hepatoma. Significantly, studies on the hepatoma enzyme conducted in this laboratory (Arora, K.K., Fanciulli, M., and Pedersen, P.L. (1990) J. Biol. Chem. 265, 6481-6488) resulted also in its overexpression in Escherichia coli in active form. We have now used site-directed mutagenesis for the first time in studies of hexokinase to evaluate the role of amino acid residues predicted to interact with either glucose or ATP. Four amino acid residues (Ser-603, Asp-657, Glu-708, and Glu-742) believed to interact with glucose were mutated to alanine or glycine, whereas a lysine residue (Lys-558) thought to be directly involved in binding ATP was mutated to either methionine or arginine. Of all the mutations in residues believed to interact with glucose, the Asp-657----Ala mutation is the most profound, reducing the hexokinase activity to a level less than 1% of the wild type. The relative Vmax values for Ser-603----Ala, Glu-708----Ala, and Glu-742----Ala enzymes are 6, 10, and 6.5%, respectively, of the wild-type enzyme. Glu-708 and Glu-742 mutations increase the apparent Km for glucose 50- and 14-fold, respectively, while the Ser-603----Ala mutation decreases the apparent Km for glucose 5-fold. At the putative ATP binding site, the relative Vmax for Lys-558----Arg and Lys-558----Met enzymes are 70 and 29%, respectively, of the wild-type enzyme with no changes in the apparent Km for glucose. No changes were observed in the apparent Km for ATP with any mutation. These results support the view that all 4 residues predicted to interact with glucose from earlier x-ray studies may play a role in binding and/or catalysis. The Asp-657 and Ser-603 residues may be involved in both, while Glu-708 and Glu-742 clearly contribute to binding but are not essential for catalysis. In contrast, Lys-558 appears to be essential neither for binding nor catalysis.  相似文献   

20.
Three phospholipase A2 enzymes or homologs were purified from the venom of Trimeresurus mucrosquamatus (Taiwan habu). The most abundant one was found to be a phospholipase homolog without enzyme activity, and its complete amino acid sequence was determined using oligopeptide fragments derived from digestion by endopeptidases Glu-C, Asp-N, Lys-C and alpha-chymotrypsin, and by means of gas-phase sequencing. The sequence revealed that the protein belonged to the Lys-49 family of snake venom phospholipase A2. This protein's function was characterized as edema-inducing. The Lys-49 protein has the potential to bind membrane phospholipid and Ca2+ (Kd = 1.6 x 10(-4) M) as shown by ultraviolet difference spectra; however, the catalytic site appeared to be inactive and the edematous response was independent of the protein's hydrolytic activity. Mast cells and platelets were shown to be subject to activation by the Lys-49 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号