首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stanniocalcin (STC)-2 was discovered by its primary amino acid sequence identity to the hormone STC-1. The function of STC-2 has not been examined; thus we generated two lines of transgenic mice overexpressing human (h)STC-2 to gain insight into its potential functions through identification of overt phenotypes. Analysis of mouse Stc2 gene expression indicates that, unlike Stc1, it is not highly expressed during development but exhibits overlapping expression with Stc1 in adult mice, with heart and skeletal muscle exhibiting highest steady-state levels of Stc2 mRNA. Constitutive overexpression of hSTC-2 resulted in pre- and postnatal growth restriction as early as embryonic day 12.5, progressing such that mature hSTC-2-transgenic mice are approximately 45% smaller than wild-type littermates. hSTC-2 overexpression is sometimes lethal; we observed 26-34% neonatal morbidity without obvious dysmorphology. hSTC-2-induced growth retardation is associated with developmental delay, most notably cranial suture formation. Organ allometry studies show that hSTC-2-induced dwarfism is associated with testicular organomegaly and a significant reduction in skeletal muscle mass likely contributing to the dwarf phenotype. hSTC-2-transgenic mice are also hyperphagic, but this does not result in obesity. Serum Ca2+ and PO4 were unchanged in hSTC-2-transgenic mice, although STC-1 can regulate intra- and extracellular Ca2+ in mammals. Interestingly, severe growth retardation induced by hSTC-2 is not associated with a decrease in GH or IGF expression. Consequently, similar to STC-1, STC-2 can act as a potent growth inhibitor and reduce intramembranous and endochondral bone development and skeletal muscle growth, implying that these tissues are specific physiological targets of stanniocalcins.  相似文献   

2.
Shin J  Sohn YC 《Zoological science》2008,25(7):728-738
Stanniocalcin 1 (Stc1) was originally identified as an anti-hypercalcemic hormone produced by the corpuscles of Stannius (CS) associated with the kidney in teleosts. While the stc1 gene is expressed in various tissues in fishes, its role and regulation in extra-CS tissues are unexplored. In the present study, we characterized a cDNA of stc1 in a euryhaline fish, the Japanese flounder (Paralichyhus olivaceus), and examined its expression in peripheral tissues in response to different salinities and Ca2+ ion concentrations. The Japanese flounder stc1 cDNA (1331 bp) encodes a preprohormone of 251 amino acids (aa), with a signal peptide of 17 aa and a pro-sequence peptide of 15 aa followed by the mature protein of 219 aa. The deduced aa sequence of Japanese flounder stc1 showed highest sequence identity (94.0%) with the European flounder Stc1 among fish and mammalian species, but lower identity to zebrafish, pufferfish, and human STC2 (23.1-25.4%). Lowered environmental salinity resulted in a decrease in stc1 mRNA expression in vivo in the gills, kidney, intestine, and CS glands of the Japanese flounder. Furthermore, we found that extracellular Ca2+ increased steady-state stc1 mRNA levels in gill and kidney cells as well as in the CS cells. Our findings suggest that Stc1 synthesis in the ionregulatory tissues is responsive to environmental salinity and Ca2+ level.  相似文献   

3.
Stanniocalcin-1 (STC1) and -2 (STC2) are highly related, secreted, homodimeric glycoproteins that are significantly upregulated by different forms of stress including high phosphate levels. Transgenic mice that constitutively express either human STC1 or STC2 exhibit intra-uterine growth restriction and permanent post-natal growth retardation. STC1 is expressed in chondrocytic and osteoblastic cells during murine development and can enhance differentiation of calvarial cells in culture. Therefore, there is mounting evidence that stanniocalcins (STCs) modulate bone development in vivo. To further define the effects of stanniocalcins on skeletal development, we performed a series of measurements on components of the axial, appendicular, and cranial skeleton in transgenic and wildtype mice. We show that skeletal growth is retarded and that the intramembranous bones of the cranium exhibit a particularly severe delay in suture closure. The posterior frontal suture remains patent throughout the lifetime of human STC1 and STC2 transgenic mice. We did not observe significant effects on chondrogenesis: however, calvarial cells exhibited reduced viability, proliferation and delayed differentiation, indicating that developing osteoblasts are particularly sensitive to the levels of STCs. Given the evidence linking STC1 to cellular phosphate homeostasis, we assessed the expression of a variety of phosphate regulators in transgenic and wildtype calvarial cells and found significantly lower levels of Mepe, Dmp1, Sfrp4 in transgenic cells without a change in Pit1 or Pit2. Collectively these data support a direct regulatory role for STCs in osteoblasts and suggest that overexposure to these factors inhibits normal skeletal development without significant changes in patterning.  相似文献   

4.
The regulation of cellular Ca(2+) homeostasis is essential for innumerable physiological and pathological processes. Stanniocalcin 1, a secreted glycoprotein hormone originally described in fish, is a well-established endocrine regulator of gill Ca(2+) uptake during hypercalcemia. While there are two mammalian Stanniocalcin homologs (STC1 and STC2), their precise molecular functions remain unknown. Notably, STC2 is a prosurvival component of the unfolded protein response. Here, we demonstrate a cell-intrinsic role for STC2 in the regulation of store-operated Ca(2+) entry (SOCE). Fibroblasts cultured from Stc2 knockout mice accumulate higher levels of cytosolic Ca(2+) following endoplasmic reticulum (ER) Ca(2+) store depletion, specifically due to an increase in extracellular Ca(2+) influx through store-operated Ca(2+) channels (SOC). The knockdown of STC2 expression in a hippocampal cell line also potentiates SOCE, and the overexpression of STC2 attenuates SOCE. Moreover, STC2 interacts with the ER Ca(2+) sensor STIM1, which activates SOCs following ER store depletion. These results define a novel molecular function for STC2 as a negative modulator of SOCE and provide the first direct evidence for the regulation of Ca(2+) homeostasis by mammalian STC2. Furthermore, our findings implicate the modulation of SOCE through STC2 expression as one of the prosurvival measures of the unfolded protein response.  相似文献   

5.
Stanniocalcin (STC) is a hormone in fish that regulates calcium levels. Mammals have two orthologs of STC with roles in calcium and phosphate metabolism and perhaps cell differentiation. In the kidney and gut, STC regulates calcium and phosphate homeostasis. In the mouse uterus, Stc1 increases in the mesometrial decidua during implantation. These studies determined the effects of pregnancy and related hormones on STC expression in the ovine uterus. In Days 10-16 cyclic and pregnant ewes, STC1 mRNA was not detected in the uterus. Intriguingly, STC1 mRNA appeared on Day 18 of pregnancy, specifically in the endometrial glands, increased from Day 18 to Day 80, and remained abundant to Day 120 of gestation. STC1 mRNA was not detected in the placenta, whereas STC2 mRNA was detected at low abundance in conceptus trophectoderm and endometrial glands during later pregnancy. Immunoreactive STC1 protein was detected predominantly in the endometrial glands after Day 16 of pregnancy and in areolae that transport uterine gland secretions across the placenta. In ovariectomized ewes, long-term progesterone therapy induced STC1 mRNA. Although interferon tau had no effect on endometrial STC1, intrauterine infusions of ovine placental lactogen (PL) increased endometrial gland STC1 mRNA abundance in progestinized ewes. These studies demonstrate that STC1 is induced by progesterone and increased by a placental hormone (PL) in endometrial glands of the ovine uterus during conceptus (embryo/fetus and extraembryonic membranes) implantation and placentation. Western blot analyses revealed the presence of a 25-kDa STC1 protein in the endometrium, uterine luminal fluid, and allantoic fluid. The data suggest that STC1 secreted by the endometrial glands is transported into the fetal circulation and allantoic fluid, where it is hypothesized to regulate growth and differentiation of the fetus and placenta, by placental areolae.  相似文献   

6.
7.
The transforming growth factor beta (TGFB) protein family is renowned for its diverse roles in developmental biology including reproduction. Gremlin is a member of the differential screening-selected gene aberrative in neuroblastoma (DAN)/cerberus family of bone morphogenetic protein (BMP) antagonists. Recent studies on gremlin focus on its involvement in embryonic skeletal, lung, and kidney development. To define the role of gremlin (Grem1) in female reproduction, we analyzed postnatal folliculogenesis using global and conditional knockout (cKO) mice for gremlin. Grem1(-/-) mice die within 48 h after birth, and ovaries collected from neonatal Grem1(-/-) mice demonstrated reduced oocyte numbers and delayed primordial follicle development. Transplanting Grem1(-/-) neonatal ovaries showed that folliculogenesis proceeded to large antral follicle stage, but Grem1(-/-) ovaries contained corpora lutea-like structures not found in control-transplanted ovaries. However, Grem1 cKO mice had comparable fertility to control mice. These data suggest that gremlin plays a previously uncharacterized role in the regulation of oocyte numbers and the timing of primordial follicle development, but either it is not required for later folliculogenesis or its loss is possibly compensated by other BMP antagonists.  相似文献   

8.
斯钙素(stanniocalcin,STC)是一种最早在硬骨鱼中发现的糖蛋白类激素. 哺乳动物斯钙素在体内钙磷代谢、肌肉骨骼系统的发育等方面均起到重要作用,并且在心血管疾病、肿瘤发展以及神经系统疾病中也扮演重要角色. 近年,斯钙素在骨骼发育中的作用逐渐引起科学界的关注. 骨组织中STC由成软骨细胞、成骨细胞分泌,并以自分泌/旁分泌的形式作用于局部组织细胞中,主要影响软骨形成和骨重建过程.本文以斯钙素为主题,综述了其生化分子特性、其在骨组织中的表达分布特点,以及该分子在成熟骨组织骨重建过程中的作用机制. 本文将为深入了解斯钙素在骨组织代谢中的作用提供帮助.  相似文献   

9.
Lee HJ  Lee YJ  Kang CM  Bae S  Jeoung D  Jang JJ  Lee SS  Cho CK  Lee YS 《Radiation research》2008,170(5):579-590
The aim of this work was to identify specific genes involved in rat mammary tumors induced by dimethylbenz(a)anthracene (DMBA) or radiation. More TUNEL- and PCNA-positive cells were present in mammary tumors induced by radiation than in tumors induced by DMBA, whereas DNA damage responses like p53 accumulation and histone H2AX phosphorylation were higher in DMBA-induced tumors, even though the pathology was similar in both types of tumors. cDNA microarray and real-time RT-PCR analysis of radiation- or DMBA-induced tumor tissues, revealed that stanniocalcin 2 (Stc2), interferon regulatory factor 1 (Irf1), interleukin 18 binding protein (Il18bp), and chloride channel calcium activated 3 (Clca3) were expressed in both, and that arachidonate 5-lipoxygenase activating protein 1 (Alox5ap) and cathepsin S (Ctss) were expressed only in radiation-induced tumors. No DMBA-specific gene signatures were found. Soft agar growth assays were carried out to identify the carcinogenic features of these specific genes. Cells stably transfected with Alox5ap, Ctss, Stc2, Irf1, Il18bp and Clca3 showed morphological changes compared to controls. These findings indicate different gene alterations in carcinogen- or radiation-induced mammary tumors with similar pathological stages.  相似文献   

10.
斯钙素的研究进展   总被引:4,自引:0,他引:4  
Chen WN  Zhu GJ 《生理科学进展》2008,39(3):225-228
斯钙素(stanniocalcin,STC)是一种糖蛋白激素,最早在硬骨鱼中发现,起着调节钙/磷平衡的作用.近年来在人和其它哺乳动物中发现也存在STC,先后分别命名为STC1和STC2.STC1基因可以产生两种形式的STC:一个是分子量为50kD的多肽,被称作STC50;另一种是一组分子量较大的不同形式的STC,被统称为big STC.STC1和STC2均可广泛表达于各种组织.STC成为一种新的肿瘤标志物,并且在心血管疾病、炎症细胞迁移、胚泡着床和子宫的蜕膜化等多方面都起重要作用.  相似文献   

11.
STC1, a mammalian homologue of stanniocalcin (STC) which plays a major role in calcium/phosphate homeostasis in fish, has been recently isolated. We have characterized the spatiotemporal distribution of STC1 mRNA and protein during mouse embryonic development generally and osteogenesis specifically. Northern blotting analysis of whole embryos showed that STC1 mRNA is highly and differentially expressed during embryogenesis. By in situ hybridization, STC1 mRNA was detected early in mesenchymal condensations and was then found to be highly expressed in perichondrial cells, periosteal cells, and then osteoblasts during endochondral bone formation. In bones forming by intramembranous ossification, STC1 mRNA was not detected until osteogenic cells appeared. The cellular distribution of STC1 protein closely corresponded to that of its mRNA, but the protein was also detected in hypertrophic chondrocytes. In the MC3T3-E1 osteogenic cell model, STC1 protein and mRNA were detectable throughout proliferation and differentiation stages but levels were relatively higher late during nodule formation/mineralization phases. For comparison, STC1 mRNA was also found in epithelial cells of both embryonic and adult intestine that had not previously been described among tissues responsive to calcium/phosphate transport. These results suggest that STC1 is expressed in a time- and cell-specific manner and may play an autocrine/paracrine role during osteoblast development and bone formation.  相似文献   

12.
The protein Shadoo (Sho) is a paralogue of prion protein, and encoded by the gene Sprn. Like prion protein it is primarily expressed in central nervous system, and has been shown to have a similar expression pattern in certain regions of the brain. We have generated reporter mice carrying a transgene encompassing the Sprn promoter, exon 1, intron 1 and the 5′-end of exon 2 driving expression of either the LacZ or GFP reporter gene to study the expression profile of Shadoo in mice. Expression of the reporter genes was analysed in brains of these transgenic mice and was shown to mimic that of the endogenous gene expression, previously described by Watts et al. [1]. Consequently, the Sprn-LacZ mice were used to study the spatial expression of Sho in other tissues of the adult mouse. Several tissues were collected and stained for β-gal activity, including the thymus, heart, lung, liver, kidney, spleen, intestine, muscle, and gonads. From this array of tissues, the transgene was consistently expressed only in specific cell types of the testicle and ovary, suggesting a role for Shadoo in fertility and reproduction. These mice may serve as a useful tool in deciphering the regulation of the prion-like gene Sprn and thus, indirectly, of the Shadoo protein.  相似文献   

13.
Dihydronicotinamide riboside (NRH):quinone oxidoreductase 2 (NQO2) is a flavoenzyme that catalyzes the reductive metabolism of quinones. To examine the in vivo role of NQO2, NQO2-null (NQO2-/-) mice were generated using targeted gene disruption. Mice lacking NQO2 gene expression showed no detectable developmental abnormalities and were indistinguishable from wild-type (NQO2+/+) mice. However, NQO2-null mice exhibited myeloid hyperplasia of the bone marrow and increased neutrophils, basophils, eosinophils, and platelets in the peripheral blood. Decreased apoptosis of bone marrow cells and circulating granulocytes contributed to myeloid hyperplasia and hyperactivity of bone marrow in NQO2-null mice. The hematological changes in NQO2-/- mice were specifically associated with loss of the NQO2 gene because histological analysis of various tissues including spleen, thymus, blood cultures, and urine analysis demonstrated no sign of infection. NQO2-null mice also demonstrated decreased toxicity when exposed to menadione or menadione with NRH. These results establish a role for NQO2 in protection against myelogenous hyperplasia and in metabolic activation of menadione, leading to hepatic toxicity. The NQO2-null mice are a model for NQO2 deficiency in humans and can be used to determine the role of this enzyme in sensitivities to toxicity and carcinogenesis.  相似文献   

14.
斯钙素(Stanniocalcin, STC)是一类首先在鱼类特有的内分泌腺--斯坦尼氏小体(Corpuscles of Stannius, CS)、随后又在人和哺乳动物中发现的同型二聚体糖蛋白激素,具有广泛的组织表达模式和多种生物学效应.为阐明两栖类动物是否存在STC1基因的表达及其表达模式,本研究基于部分已知鱼类和哺乳动物的STC1基因序列,从中华大蟾蜍(Bufo bufo gargarizans)卵巢获得了STC1基因的部分序列(GenBank注册号为EF586886).同源性分析显示,所获得的中华大蟾蜍STC1基因部分序列与鱼类STC1基因相应序列的同源性在40%-48%,而与小鼠和人STC1基因相应序列的同源性分别为41.89%和37.95%.RT-PCR分析显示STC1基因可在肾脏、性腺等多种组织中表达;原位杂交(in situ hybridization, ISH)技术表明中华大蟾蜍肾脏的近端小管、远端小管和集合管细胞内表达STC1 mRNA.这些结果首次证实两栖类动物中华大蟾蜍组织中存在STC1基因的表达  相似文献   

15.
BACKGROUND: Type 1 diabetes (T1D) is a T-cell-dependent autoimmune disease resulting from destructive inflammation (insulitis) of the insulin-producing pancreatic beta-cells. Transgenic expression of proinsulin II by a MHC class II promoter or transfer of bone marrow from these transgenic mice protects NOD mice from insulitis and diabetes. We assessed the feasibility of gene therapy in the NOD mouse as an approach to treat T1D by ex vivo genetic manipulation of normal hematopoietic stem cells (HSCs) with proinsulin II followed by transfer to recipient mice. METHODS: HSCs were isolated from 6-8-week-old NOD female mice and transduced in vitro with retrovirus encoding enhanced green fluorescent protein (EGFP) and either proinsulin II or control autoantigen. Additional control groups included mice transferred with non-manipulated bone marrow and mice which did not receive bone marrow transfer. EGFP-sorted or non-sorted HSCs were transferred into pre-conditioned 3-4-week-old female NOD mice and insulitis was assessed 8 weeks post-transfer. RESULTS: Chimerism was established in all major lymphoid tissues, ranging from 5-15% in non-sorted bone marrow transplants to 20-45% in EGFP-sorted bone marrow transplants. The incidence and degree of insulitis was significantly reduced in mice receiving proinsulin II bone marrow compared to controls. However, the incidence of sialitis in mice receiving proinsulin II bone marrow and control mice was not altered, indicating protection from insulitis was antigen specific. CONCLUSIONS: We show for the first time that ex vivo genetic manipulation of HSCs to express proinsulin II followed by transplantation to NOD mice can establish molecular chimerism and protect from destructive insulitis in an antigen-specific manner.  相似文献   

16.
Stanniocalcin 1 as a pleiotropic factor in mammals   总被引:3,自引:0,他引:3  
Yoshiko Y  Aubin JE 《Peptides》2004,25(10):1663-1669
Stanniocalcin (STC)1 is the mammalian homologue of STC which was originally identified as a calcium/phosphate-regulating hormone in bony fishes. STC1 is a homodimeric phosphoglycoprotein with few if any identified unique motifs in its structure with the exception of CAG repeats in the 5'-untranslated region. In contrast to fish STC which is expressed mainly in the corpuscles of Stannius, STC1 is expressed in a wide variety of tissues, but unexpectedly is not detected in the circulation under normal circumstances. Thus, STC1 may play an autocrine/paracrine rather than a classic endocrine role in mammals. Consistent with this, pleiotropic effects of STC1 have been postulated in physiological and measured in pathological situations. There is much current interest in identifying a specific STC1 receptor and putative signaling pathways to which it may be coupled. In this regard, STC1 may regulate intracellular calcium and/or phosphate (Pi) levels. In the skeletal system, for example, Pi uptake in bone-forming osteoblasts via a direct effect of STC1 on expression of the NaPi transporter Pit1 may contribute to bone formation. Here we review current understanding of the role of STC1 and its possible molecular mechanisms in the skeleton and elsewhere.  相似文献   

17.
We identified committed T cell progenitors (CTPs) in the mouse bone marrow that have not rearranged the TCRbeta gene; express a variety of genes associated with commitment to the T cell lineage, including GATA-3, T cell-specific factor-1, Cbeta, and Id2; and show a surface marker pattern (CD44+ CD25- CD24+ CD5-) that is similar to the earliest T cell progenitors in the thymus. More mature committed intermediate progenitors in the marrow have rearranged the TCR gene loci, express Valpha and Vbeta genes as well as CD3epsilon, but do not express surface TCR or CD3 receptors. CTPs, but not progenitors from the thymus, reconstituted the alphabeta T cells in the lymphoid tissues of athymic nu/nu mice. These reconstituted T cells vigorously secreted IFN-gamma after stimulation in vitro, and protected the mice against lethal infection with murine CMV. In conclusion, CTPs in wild-type bone marrow can generate functional T cells via an extrathymic pathway in athymic nu/nu mice.  相似文献   

18.
In most mammalian tissues, the stanniocalcin-1 gene (STC-1) produces a 50-kDa polypeptide hormone known as STC50. Within the ovaries, however, the STC-1 gene generates three higher-molecular-mass variants known as big STC. Big STC is targeted locally to corpus luteal cells to block progesterone release. During pregnancy and lactation, however, ovarian big STC production increases markedly, and the hormone is released into the serum. During lactation, this increase in hormone production is dependent on a suckling stimulus, suggesting that ovarian big STC may have regulatory effects on the lactating mammary gland. In this report, we have addressed this possibility. Our results revealed that virgin mammary tissue contained large numbers of membrane- and mitochondrial-associated STC receptors. However, as pregnancy progressed into lactation, there was a decline in receptor densities on both organelles and a corresponding rise in nuclear receptor density, most of which were on milk-producing, alveolar cells. This was accompanied by nuclear sequestration of the ligand. Sequestered STC resolved as one approximately 135-kDa band in the native state and therefore had the appearance of a big STC variant. However, chemical reduction collapsed this one band into six closely spaced, lower-molecular-mass species (28-41 kDa). Mammary gland STC production also underwent a dramatic shift during pregnancy and lactation. High levels of STC gene expression were observed in mammary tissue from virgin and pregnant rats. However, gene expression then fell to nearly undetectable levels during lactation, coinciding with the rise in nuclear targeting. These findings have thus shown that the mammary glands are indeed targeted by STC, even in the virgin state. They have further shown that there are marked changes in this targeting pathway during pregnancy and lactation, accompanied by a switch in ligand source (endogenous to exogenous). They also represent the first example of nuclear targeting by STC.  相似文献   

19.
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.  相似文献   

20.
Alveolar type II (ATII) cells remain differentiated and express surfactant proteins when cultured at an air–liquid (A/L) interface. When cultured under submerged conditions, ATII cells dedifferentiate and change their gene expression profile. We have previously shown that gene expression under submerged conditions is regulated by hypoxia inducible factor (HIF) signaling due to focal hypoxia resulting from ATII cell metabolism. Herein, we sought to further define gene expression changes in ATII cells cultured under submerged conditions. We performed a genome wide microarray on RNA extracted from rat ATII cells cultured under submerged conditions for 24–48 h after switching from an A/L interface. We found significant alterations in gene expression, including upregulation of the HIF target genes stanniocalcin-1 (STC1), tyrosine hydroxylase (Th), enolase (Eno) 2, and matrix metalloproteinase (MMP) 13, and we verified upregulation of these genes by RT-PCR. Because STC1, a highly evolutionarily conserved glycoprotein with anti-inflammatory, anti-apoptotic, anti-oxidant, and wound healing properties, is widely expressed in the lung, we further explored the potential functions of STC1 in the alveolar epithelium. We found that STC1 was induced by hypoxia and HIF in rat ATII cells, and this induction occurred rapidly and reversibly. We also showed that recombinant human STC1 (rhSTC1) enhanced cell motility with extended lamellipodia formation in alveolar epithelial cell (AEC) monolayers but did not inhibit the oxidative damage induced by LPS. We also confirmed that STC1 was upregulated by hypoxia and HIF in human lung epithelial cells. In this study, we have found that several HIF target genes including STC1 are upregulated in AECs by a submerged condition, that STC1 is regulated by hypoxia and HIF, that this regulation is rapidly and reversibly, and that STC1 enhances wound healing moderately in AEC monolayers. However, STC1 did not inhibit oxidative damage in rat AECs stimulated by LPS in vitro. Therefore, alterations in gene expression by ATII cells under submerged conditions including STC1 were largely induced by hypoxia and HIF, which may be relevant to our understanding of the pathogenesis of various lung diseases in which the alveolar epithelium is exposed to relative hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号