首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure.  相似文献   

2.
The modification of bacteriophages grown on r-m+/- restriction and modification mutants of Escherichia coli K-12 or B appears to be related to the number of restriction-specific sites in the viral genome. Bacteriophage fd and its mutant U1 fd, which carry two and one B-specific sites, respectively, are not modified in vivo by rB-mB+/- mutant strains. In vitro treatment of fd RF-B+/- deoxyribonucleic acid (DNA) or U1 fd RF-B+/- DNA by endo R-Eco B results in cleavage of the substrate DNA. Lambda bacteriophage, after growth in r-m+/- mutant host strains (lambda-K+/- or lambda-B+/-), is partially protected from in vivo degradation by wild-type homospecific strains. Its efficiency of plating on these strains is approximately 10(-2). However, a hybrid phi80-lambda phage which carries only one K-specific site (sklambda-1) is not modified by rK-mK+/- strains. Labeled DNAs from lambda-B+/- and lambda-K+/- phages were used as substrates for endo R-Eco B and endo R-Eco K nucleases. Zonal centrifugation analysis of the products of the reactions indicate that rK-mK+/- mutants do not protect lambda DNA from in vitro degradation by endo R-Eco K. In contrast, rB-mB+/- mutants appear to partially protect lambda DNA from attack by endo R-Eco B.  相似文献   

3.
A general, reliable conjugation system for Agrobacterium tumefaciens in the absence of plant tissue is described in which A. tumefaciens can serve either as the donor or recipient of plasmid deoxyribonucleic acid with reasonable efficiency. Plasmid RP4 was transferred from Escherichia coli to A. tumefaciens and from strain of A. tumefaciens. Both RP4 and the A. tumefaciens virulence-associated plasmids were detected by alkaline sucrose gradients in A. tumefaciens strains A6 and C58 after mating with E. coli J53(RP4). The pathogenicity (tumor foramtion) of strains A6 and C58 and the sensitivity of strain C58 to bacteriocin 84 were unaffected by the acquistion of RP4 by the Agrobacterium strains. Plasmid R1drd-19 was not transferred to A. tumefaciens. Transformation experiments with plasmid deoxyribonucleic acid were unsuccessful, even though, in the case of RP4, conjugation studies showed taht the deoxyribonucleic acid was compatible with that of the recipient strains.  相似文献   

4.
We have used P1 transduction to create intergeneric hybrid strains of enteric bacteria by moving the genA and hut genes between Klebsiella aerogenes, Escherichia coli and Salmonella typhimurium. The use of E. coli as the recipient in such transductions permits the construction of episomes and specialized transducing phage containing non-E. coli material. The effect of host restriction modification and deoxyribonucleic acid homology on the frequency of intergeneric transduction of these loci has been examined.  相似文献   

5.
Escherichia coli K-12 F- mutants defective in conjugation with an I-type donor (ConI-) were isolated and characterized. These mutants are specific in that they are conjugation proficient with other types of donor strains. They have an altered susceptibility to phages and detergents. Chemical analysis of the cell envelopes of mutant strains has shown that the lipopolysaccharide (LPS) is altered and that one major outer-membrane protein is absent. Conjugation experiments in which LPS from wild-type cells was added to a mating mixture, made up with wild-type donor and recipient cells, showed inhibition in transconjugant formation when an I-type donor, but not an F-type donor, was used. This strongly suggests that LPS of the recipient cell is directly involved in the ability to mate with an I-type donor but not with an F-type donor. The mutations are located in the 78- to 82-min region of the E. coli map, with one exception where the mutation maps near or in the galactose operon.  相似文献   

6.
Several mutants of Citrobacter intermedius C3 lacking both the ability to synthesize proline and the ability to excrete glutamic acid were isolated by treatment with nitrosoguanidine. No revertants for either characteristic were obtained from these mutants. The ability to excrete glutamic acid was transferred to those mutants with very high frequencies in mating experience by using auxotropic excreting strains as donors. Moreover, the ability to synthesize proline was transferred together with the ability to excrete glutamic acid when an excreting strain was used as donor. The transconjugants showed a rapid spontaneous curing of both genetic markers. It was shown by two different methods that a band of covalently closed circular deoxyribonucleic acid is present in the cesium chloride gradients corresponding to the wild type and excretor mutants. Nonexcretor mutants described herein lacked such a band. Pro + transformants that were also excretors were obtained with plasmid deoxyribonucleic acid isolated either from wild type or from an excretor mutant. These data strongly indicate that glutamic acid excretion in C. intermedius C3 is related to the presence of extrachromosomal deoxyribonucleic acid.  相似文献   

7.
Gough, Michael (Brown University, Providence, R.I.), and Seymour Lederberg. Methylated bases in the host-modified deoxyribonucleic acid of Escherichia coli and bacteriophage lambda. J. Bacteriol. 91:1460-1468. 1966.-The deoxyribonucleic acid (DNA) from strains of Escherichia coli and phage lambda was examined to determine whether the types or amounts of methionine-derived methylated bases present correlated with the host-specific modification of that DNA. The DNA of strain C600 (which has K-12 modification specificity) and of a modificationless mutant of C600 are similar in their content of 5-methylcytosine and 6-methylaminopurine. Strains Bc251 and its P1-lysogen differ in P1-controlled specificity, but they have the same content of 6-methylaminopurine, and both lack 5-methylcytosine in their DNA. Phage lambda contains the same methylated bases as its host of origin, but in reduced amounts and in different proportions. Although minor amounts of these methylated bases may have importance as a result of their location, the presence of the majority of these methylated bases is irrelevant to the specificity of host modification of DNA.  相似文献   

8.
Under proper conditions, one infective center was obtained for 3 x 10(8) molecules of P22 phage deoxyribonucleic acid (DNA) when lysozyme-ethylenediaminetetraacetic acid spheroplasts of Escherichia coli were transfected in the presence of 25 mug of protamine sulfate per ml. A 3- to 50-fold B-specific and K-specific E. coli restriction of the incoming P22 DNA was observed. When P22 DNA-infected E. coli spheroplasts were plated with infertile r(LT) (+)m(LT) (+)Salmonella typhimurium indicator, an additional 70-fold restriction was observed. In the presence of protamine sulfate, penicillin spheroplasts of S. typhimurium SB1330 could be transfected b P22 DNA with efficiencies sometimes approaching those obtained with the E. coli spheroplasts; thus, facilitation of transfection by protamine sulfate is not limited to E. coli or to lysozyme-ethylenediaminetetraacetic acid spheroplasts. The application of these results to studies of transfection among other genuses and to studies of in vitro host-controlled restriction and modification for the two loci in S. typhimurium and the one locus in E. coli is discussed.  相似文献   

9.
In crosses of Salmonella typhimurium FfinP301 lac+ to F- strains of S. typhimurium in broth, recipient strains which were rough mutants affected in the outer core region of the lipopolysaccharide gave an average of 1.4 Lac+ transconjugants per donor cell and over 50% of the donor and recipient cells in mating aggregates, whereas smooth recipient strains gave 0.08 Lac+ transconjugants and few cells in mating aggregates. Strains with mutations affecting the inner core of the lipopolysaccharide were usually poor recipients. When cells were mated on Millipore membrane filters, both smooth and rough strains gave ca. 1.0 Lac+ transconjugants per donor cell. Plasmids in Inc groups FI, FII, M, J, and I beta gave more transconjugants with rough than smooth strains, but there were no difference in crosses with plasmids in Inc groups T, L, P, N, and W. Strains with mutations in the ompA gene (deficient in Omp Ap = 33K = II* = conjugation protein) yielded only 0.02 Lac+ transconjugants per donor cell and few cells in mating aggregates. There was no indication of a deficiency of Omp Ap in smooth strains compared with rough strains. Reduced fertility of smooth recipients may occur because the O side chains of the lipopolysaccharide shield the recipient and reduce the frequency of stabilization of mating aggregates. However, gradient-of-transmission experiments indicated that once these mating aggregates are stabilized, they are equally stable in both smooth and rough recipients. Fertility was high in crosses of S. typhimurium Flac+ to Escherichia coli K-12 F- (0.75 Lac+ transconjugants per donor cell; over 50% of the cells in mating aggregates). In crosses of E. coli K-12 Flac+ to S. typhimurium smooth F-, ca. 10(-5) Lac+ transconjugants per donor cell were obtained; in crosses to rough recipient strains, fertility was increased 14-fold, and when the recipient was defective in the SA and LT host restriction systems, fertility was increased in additional 100-fold. Thus, both the lipopolysaccharide and the protein in the cell envelope of S. typhimurium were shown to be important in the recipient function in F-mediated conjugation.  相似文献   

10.
Three mutations, denoted lex-1, -2 and -3, which increase the sensitivity of Escherichia coli K-12 to ultraviolet light (UV) and ionizing radiation, have been found by three-factor transduction crosses to be closely linked to uvrA on the E. coli K-12 linkage map. Strains bearing these mutations do not appear to be defective in genetic recombination although in some conjugational crosses they may fail to produce a normal yield of genetic recombinants depending upon the time of mating and the marker selected. The mutagenic activity of UV is decreased in the mutant strains. After irradiation with UV, cultures of the strains degrade their deoxyribonucleic acid at a high rate, similar to recA(-) mutant strains. Stable lex(+)/lec(-) heterozygotes are found to have the mutant radiation-sensitive phenotype of haploid lex(-) strains.  相似文献   

11.
Both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) male-specific phages, with an F-specific host range, inhibited the bacterial mating process of Escherichia coli. DNA phages prevented the formation of mating pairs but had no effect on mating pairs once they were formed. A step in RNA phage infection, prior to RNA penetration, prevented the formation of mating pairs and, in addition, prevented a fraction of existing mating pairs from completing the mating process. These findings are compatible with the hypothesis that donor cells have a single surface structure involved in both conjugation and male-phage adsorption and that this element is the F pilus.  相似文献   

12.
A study of the reactivation of ultraviolet-irradiated plasmid and phage deoxyribonucleic acid molecules after transformation into Escherichia coli strains indicated that, when double-stranded deoxyribonucleic acid was used as the donor species, it was taken up without conversion to the single-standed form.  相似文献   

13.
Near-ultraviolet (300 to 400 nm) irradiation of L-tryptophan yielded H2O2 (a toxic photoproduct) that was selectively lethal for rec and polA1 Escherichia coli mutants. H2O2 treatment of cells resulted in the induction of single-strand deoxyribonucleic acid breaks. These breaks were repaired to only a small extent in polA1, recA recB, and recA mutants, but were efficiently repaired in wild-type strains. We conclude that H2O2 deoxyribonucleic acid lesions require both the polA+ and recA+ pathways for repair.  相似文献   

14.
We predicted that, among mutants resistant to infection by single-stranded deoxyribonucleic acid viruses, there would be some also resistant to "infection" by single-stranded conjugal deoxyribonucleic acid. Approximately 5% of the Escherichia coli K-12 females selected for resistance to phage ST-1 were defective as recipients in conjugation. These spontaneous mutants fell into two classes. Type A accepted both plasmid and chromosomal markers at greatly reduced frequencies (<10(-6) of normal for at least one strain), formed "rough" colonies, and (unlike their parent) were nonflagellated. Type B strains accepted both chromosomal and plasmid markers at reduced frequencies (10(-2) to 10(-1) of normal), were temperature sensitive for growth, and showed increased susceptibility towards antibiotics and deoxycholate. Both classes of mutants also were resistant to certain female-specific viruses.  相似文献   

15.
Weissbach, Arthur (National Institutes of Health, Bethesda, Md.), Allan Lipton, and Arnold Lisio. Intracellular forms of lambda deoxyribonucleic acid in Escherichia coli infected with clear or virulent mutants of bacteriophage lambda. J. Bacteriol. 91:1489-1493. 1966.-Infection of either the sensitive or lysogenic strain of Escherichia coli K-112S by lambda(+) leads to the formation of a new phage deoxyribonucleic acid (DNA) species having the properties of a twisted circular DNA duplex. This new phage DNA species is also seen in cells infected with clear or virulent mutants of lambda which cannot lysogenize, or do so at a low frequency. The sedimentation rate of circular lambda DNA duplex at various pH values and its lability were examined.  相似文献   

16.
A general procedure is described for isolation of T-even phage-tolerant mutants of Escherichia coli. Two such mutants of E. coli B have been examined in some detail. These mutants adsorb T-even phages but are unable to release viable progeny. Under certain conditions, viability of the cells is completely unaffected by phage infection in one mutant, and there is but a slight decrease in colony-forming ability in the other. Phage deoxyribonucleic acid (DNA) is injected into these cells, as shown by the formation of phage-specific enzymes, but it is not degraded to acid-soluble material. Some phage DNA replication occurs in both strains. The mutants are both more resistant to ultraviolet light than is the parent strain.  相似文献   

17.
We have determined the nature of the deoxyribonucleic acid (DNA) modification governed by the SA host specificity system of Salmonella typhimurium. Two lines of evidence indicate that SA modification is based on methylation of DNA-adenine residues. (i) The SA+ locus of Salmonella was transferred into Escherichia coli B, a strain that does not contain 5-methylcytosine in its DNA; although the hybrid strain was able to confer SA modification, its DNA still did not contain 5-methylcytosine. (ii) the N6-methyladenine content of phage L DNA was measured after growth in various host strains; phage lacking SA modification contained fewer N6-methyladenine residues per DNA. We also investigated the possibility, suggested by others (32), that SA modification protects phage DNA against restriction by the RII host specificity system. Phages lambda, P3, and L were grown in various SA+ and SA- hosts and tested for their relative plating ability on strains containing or lacking RII restriction; the presence or absence of SA modification had no effect on RII restriation. In vitro studies revealed, however, that Salmonella DNA is protected against cleavage by purified RII restriction endonuclease (R-EcoRII). This protection is not dependent on SA modification; rather, it appears to be due to methylation by a DNA-cytosine methylase which has overlapping specificity with the RII modification enzyme, but which is not involved in any other known host specificity system.  相似文献   

18.
Role for the Female in Bacterial Conjugation in Escherichia coli   总被引:1,自引:1,他引:0       下载免费PDF全文
Hfr and F' Lac male strains of Escherichia coli were mated with purine-requiring females which had been starved for purine. These females formed mating pairs with the males. However, a mating in the absence of purine markedly reduced the yield of recombinants. Transfer of F' Lac or of lambda prophage also occurred infrequently. It was concluded that deoxyribonucleic acid transfer from male to female requires some, as yet unknown, function of the female.  相似文献   

19.
Escherichia coli strains B and K-12, which restrict growth of nonglucosylated T- even phage (T(*) phage), and nonrestricting strains (Shigella sonnei and mutants of E. coli B) were tested for levels of endonuclease I and exonucleases I, II, and III, by means of in vitro assyas. Cell-free extracts freed from deoxyribonucleic acid (DNA) were examined with three substrates: E. coli DNA, T(*)2 DNA, and T2 DNA. Both restricting and nonrestricting strains had comparable levels of the four nuclease activities and had similar patterns of preference for the three substrates. In addition, mutants of E. coli B and K-12 that lack endonuclease I were as effective as their respective wild types in restricting T(*) phage.  相似文献   

20.
Escherichia coli strains freshly isolated from natural sources are inefficient indicators of coliphages present in sewage. Four E. coli strains recently isolated from clinical specimens were mutagenized to obtain lac(-) mutants. Such mutants were infected with an F'lac(+) sex factor of E. coli K-12. Pairs of isogenic lac(-) and lac(-)/F'lac(+) strains were used as indicators of coliphages present in sewage, and it was found that such strains can be effectively used for a direct and almost selective enumeration of F-specific coliphage contents of sewage samples. Serological tests were applied to a number of F-specific phages isolated. All the isolates that were tested fell into two distinguishable antigenic classes: members of one class being related to ribonucleic acid (RNA) phage MS2 and those of the other being related to another RNA phage, namely, Qbeta. MS2-related phages have been found to be more widely distributed than the Qbeta related phages. Most habitats sampled were found to yield only one or the other kind of phage. Single-stranded deoxyribonucleic acid-containing F-specific phages were not detectable by the methods employed by us.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号