首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Late Silurian nautiloids from Bohemia have either (1) thin and densely spaced septa of which many are broken and internally accumulated, or (2) thick and widely spaced septa wnich are all intact. Since the latest chamber (s) and the shell wall are undamaged, septal fragmentation occurred by implosion during postmortem sinking, with sea water rushing in through the siphuncle. The latest connecting ring(s) were more permeable than the immature ones, permitting pressure compensation in the latest chamber(s). Septal debris accumulated adapically indicating the (ultimate) sinking orientation. Depth (maxima) of the nautiloid habitats and of the Bohemian basin are estimated from the strength parameters of the broken and intact septa: brevicones — epipelagic, weak longicones — moderately shallow pelagic, strong longicones — nektobenthic, sea floor depth — several 100 m. Silurian-Nautiloids-Shell-Connecting rings-Bathymetry.  相似文献   

2.
To provide quantitative information on arm regeneration in cuttlefish, the regenerating arms of two cuttlefish species, Sepia officinalis and Sepia pharaonis, were observed at regular intervals after surgical amputation. The third right arm of each individual was amputated to ~10–20 % starting length. Arm length, suction cup number, presence of chromatophores, and behavioral measures were collected every 2–3 days over a 39-day period and compared to the contralateral control arm. By day 39, the regenerating arm reached a mean 95.5 ± 0.3 % of the control for S. officinalis and 94.9 ± 1.3 % for S. pharaonis. The process of regeneration was divided into five separate stages based on macroscopic morphological events: Stage I (days 0–3 was marked by a frayed leading edge; Stage II (days 4–15) by a smooth hemispherical leading edge; Stage III (days 16–20) by the appearance of a growth bud; Stage IV (days 21–24) by the emergence of an elongated tip; and Stage V (days 25–39) by a tapering of the elongated tip matching the other intact arms. Behavioral deficiencies in swimming, body postures during social communication, and food manipulation were observed immediately after arm amputation and throughout Stages I and II, returning to normal by Stage III. New chromatophores and suction cups in the regenerating arm were observed as early as Stage II and by Stage IV suction cup number equaled that of control arms. New chromatophores were used in the generation of complex body patterns by Stage V. These results show that both species of cuttlefish are capable of fully regenerating lost arms, that the regeneration process is predictable and consistent within and across species, and provide the first quantified data on the rate of arm lengthening and suction cup addition during regeneration.  相似文献   

3.
Internal destruction of septa in Silurian brevicone cephalopods has taken place during post-mortem descent. The breakage was caused by implosions due to increasing water pressure. A pre-vious interpretation involving instantaneous internal collapse of septa is discussed and opposed. Due to shell construction, the surviving parts of broken septa, and broken septal fragments contained within the shell, the breakage of septa must have taken place in one chamber at a time, with a speed controlled by the water seeping in through the partly blocked siphuncle. The destruction could occasionally leave isolated septa unbroken, which confirms an interpretation of repeated breakage. As the destruction of septa has taken some time it can not be excluded that shells have undergone post-mortem drift.  相似文献   

4.
5.
Sperm nucleomorphogenesis in the cephalopod Sepia officinalis is the product of the interaction between perinuclear microtubules and condensing chromatin. This interaction occurs during spermiogenesis and is established through the nuclear membrane. As in other cephalopod species, the perinuclear microtubules are transient structures. In the case of S. officinalis, they begin to appear in the basal area of the early spermatid and progress from there, establishing contact with the external nuclear membrane and follow a defined, but not symmetric, geometry. Thus, the microtubules accumulate preferentially in one area of the nuclear membrane which we refer to here as the "dorsal zone". Later, the microtubules will be eliminated before the mature spermatid migrates to the epidydimis. The chromatin is condensed within the nucleus following a complex pattern, beginning as fibro-granular structures until forming fibres of approximately 45 nm diameter (patterning phases). From this stage on, an increase in the chemical basicity of DNA-interacting proteins is produced, and chromatin fibres coalesce together, being recruited to the dorsal zone of the membrane, where there is a higher density of microtubules. This last step (condensation phases) allows the chromatin fibres to be arranged parallel to the axis of the elongating nucleus, and more importantly, is deduced to cause a lateral compression of the nucleus. This lateral compression is in fact a recruitment of the ventral zone toward the dorsal zone, which brings about an important reduction in nuclear volume. The detailed observations which comprise this work complement previous studies of spermiogenesis of Sepia and other cephalopods, and will help to better understand the process of cellular morphology implicated in the evolution of sperm nuclear shape in this taxonomic group.  相似文献   

6.
7.
8.
Melanogenesis in the ink gland of Sepia officinalis   总被引:1,自引:0,他引:1  
Among the various melanin-producing systems, the ink gland of the cuttlefish (Sepia officinalis) has traditionally been regarded as a most convenient model system for the studies of melanogenesis. The ink gland is a highly specialized organ with immature cells in the inner portion, from where the cells gradually mature, migrate towards the outer portion of the gland and become competent to produce melanin giving rise to particulate melanosomes. When cell maturation is complete, melanin is secreted into the lumen of the gland, accumulated into the ink sac and ejected on demand. Biochemical studies carried out over the past two decades have shown that the ink gland contains a variety of melanogenic enzymes, including tyrosinase, a peculiar dopachrome rearranging enzyme (which catalyses the rearrangement of dopachrome to 5,6-dihydroxyindole) and a peroxidase (presumably involved in the later stages of melanin biosynthesis). These enzymes are functionally interactive in close subcellular compartments of ink gland cells and appear to act in a concerted fashion during the process of melanogenesis in the mature portion of the gland. More recent studies have revealed that ink production and ejection are affected and modulated by the N-methyl-D-aspartate (NMDA)-nitric oxide (NO)-cyclic GMP (cGMP) signalling pathway. Glutamate NMDA receptor and NO synthase, the enzyme responsible for the synthesis of NO, have been detected by biochemical and immunohistochemical techniques in immature ink gland cells. Stimulation of NMDA receptors caused a marked elevation of cGMP levels, activation of tyrosinase and increased melanin synthesis in the mature portion of the gland, via the NO-guanylyl cyclase interaction. This signalling is also present in different regions of the nervous system in Sepia and in certain neural pathways controlling contraction of the ink sac sphincters and wall muscle in the ejection mechanism. Overall, these and other findings allowed elaboration of an improved model of melanin formation in Sepia, which underscores the complex interplay of melanogenic enzymes and regulatory factors, highlighting both the similarities and the differences with melanogenesis in mammals.  相似文献   

9.
10.
11.
Cuttlefish (Sepia officinalis) routine metabolic rate was determined in response to acute thermal changes at a rate of 1 degrees C h(-1) for a variety of animal sizes (15-496 g wet mass, laboratory reared at 15 degrees C). In a thermal frame of 11 to 23 degrees C, oxygen consumption rates (MO(2), in mumol O(2) g(-1) min(-1)) were observed to rise with increasing temperature (T, in degrees C) and to decline with increasing body mass (m, in g), according to the formula: ln MO(2)=-3.3+0.0945T-0.215 ln m (R(2)=0.93). Outside the above thermal window, animals were not able to increase MO(2) at similar rates, indicating a beginning oxygen limitation of metabolism. Large animals (>100 g body mass) already displayed lower than expected MO(2) values at 8 and 26 degrees C, while smaller animals (15 g wet mass) were characterized by a wider thermal window (MO(2) values deviated from expected rates at 5 and 29 degrees C). Morphometric data of cuttlefish mantle skin area was obtained to discuss size - related effects of skin respiration potential on thermal tolerance. Cuttlefish growth was observed to be isometric, as constant 'Vogel numbers' of 4.2 indicated (animal body masses: 11 to 401 g). In the same mass range, specific mantle surface area declined three-fold from 10.7 (0.24) (means+/-SD) to 3.3 (0.52) cm(2) g(-1). Thus, increased thermal tolerance in smaller animals may be enabled by a higher skin respiration potential due to higher specific skin surface areas. An elevated fraction of MO(2) provided by means of skin respiration in small animals could relieve the cardiovascular system, which previously has been found a major limiting component during acute thermal stress in cuttlefish.  相似文献   

12.
The salience of bilateral symmetry to humans has led to the suggestion that camouflage may be enhanced in asymmetrical patterns. However, the importance of bilateral symmetry in visual signals (and overall morphology) may constrain the evolution of asymmetrical camouflage, resulting in the bilaterally symmetrical cryptic patterns that we see throughout the animal kingdom. This study investigates the cuttlefish (Sepia officinalis), which can control the degree of symmetry in its coloration. Ten juvenile S. officinalis were filmed in two behavioural contexts (cryptic and threatened) to test the prediction that cryptic patterns will be expressed more asymmetrically than an anti-predator signal known as the 'deimatic display'. Cryptic body patterns, particularly those with a disruptive function, were found to exhibit a high degree of bilateral symmetry. By contrast, the components of the deimatic display were often expressed asymmetrically. These results are contrary to the predicted use of symmetry in defensive coloration, indicating that the role of symmetry in both crypsis and visual signalling is not as straightforward as previously suggested.  相似文献   

13.
14.
Electrophoretic and Western blot studies were conducted on collagen fractions extracted from Sepia officinalis (cuttlefish) cartilage using a modified salt precipitation method developed for the isolation of vertebrate collagens. The antibodies used had been raised in rabbit against the following types of collagen: Sepia I-like; fish I; human I; chicken I, II, and IX; rat V; and calf IX and XI. The main finding was that various types of collagen are present in Sepia cartilage, as they are in vertebrate hyaline cartilage. However, the main component of Sepia cartilage is a heterochain collagen similar to vertebrate type I, and this is associated with minor forms similar to type V/XI and type IX. The cephalopod type I-like heterochain collagen can be considered a first step toward the evolutionary development of a collagen analogous to the typical collagen of vertebrate cartilage (type II homochain). The type V/XI collagen present in molluscs, and indeed all phyla from the Porifera upwards, may represent an ancestral collagen molecule conserved relatively unchanged throughout evolution. Type IX-like collagen seems to be essential for the formation of cartilaginous tissue.  相似文献   

15.
16.
Egg mass extract was used to characterize regulatory peptides, involved in the successive steps of egg-laying of the cuttlefish Sepia officinalis. Among these peptides, a C-terminally amidated hexapeptide revealed a sperm-attracting activity. MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) and Edman degradation led to a peptide of m/z 596.6 and the following primary sequence: Pro-Ile-Asp-Pro-Gly-Val-CO(NH2). From concentrations as low as 10(-17)M, the PIDPGVamide was able to attract freshly dissected spermatozoa. Nano-ESI-Q-TOF MS (nano-electrospray ionization-quadrupole-time-of-flight mass spectrometry) analysis established the quantitative occurrence of this peptide in different egg structures. The PIDPGVamide appears to be synthesized in oocytes during vitellogenesis and released by the embedded oocytes in the external media during egg-laying to facilitate fertilization by increasing chances of gamete collision. This novel peptide called SepSAP for Sepia sperm attracting peptide is the first sperm-attracting peptide, identified in mollusks or even in protostomians.  相似文献   

17.
18.
Antje  Marschinke 《Journal of Zoology》1997,242(3):577-595
The neurosecretory system of the vena cava (NSV) of Sepia officinalis contacts the palliovisceral lobe with some axons that run parallel to the visceral nerves. Distal to the palliovisceral lobe the NSV- system widens to form a hitherto unknown extracerebral ganglion containing approximately 4200 perikarya. This is regarded as the primary origin of neurotransmitters. Distal to this nucleus area the volume and the number of cell bodies in the NSV-system is reduced. It contains neurosecretory nerve cells, two glial cell types, large cell accumulations, connective tissue and capillaries. Histochemical, immunohisto- and immunocytochemical examinations show the existence of catecholamines, and the coexistence of serotonin and FMRFamide in the NSV-System. A HPLC analysis differentiated between dopamine, noradrenaline, and adrenaline.  相似文献   

19.
20.
Sleep has been observed in several invertebrate species, but its presence in marine invertebrates is relatively unexplored. Rapid-eye-movement (REM) sleep has only been observed in vertebrates. We investigated whether the cuttlefish Sepia officinalis displays sleep-like states. We find that cuttlefish exhibit frequent quiescent periods that are homeostatically regulated, satisfying two criteria for sleep. In addition, cuttlefish transiently display a quiescent state with rapid eye movements, changes in body coloration and twitching of the arms, that is possibly analogous to REM sleep. Our findings thus suggest that at least two different sleep-like states may exist in Sepia officinalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号