首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the astroglial contribution to hypoxic injury on brain tissue metabolism, modifications of glutamine synthetase (GS) lactate dehydrogenase (LDH) enolase and malate dehydrogenase activity produced by reduced oxygen supply have been determined in primary cultures of astrocytes prepared from newborn rat cerebral cortex. Enzymatic activities were measured immediately after the hypoxic treatment (9 h) and during post injury recovery. GS level is significantly decreased in response to low oxygen pressure and increased above control value during the post hypoxic recovery period. The magnitude of GS reduction by hypoxia depends on the age of the cells in culture. Lactate dehydrogenase and enolase levels were significantly enhanced during the two periods considered. No modification of the MDH level was observed. The synthesis of LDH isoenzymes containing mainly M subunits is specifically induced by hypoxia. Our results suggest that astroglial cells may represent a particularly sensitive target toward hypoxia injury in brain tissue. Low oxygen pressure available may modify some fundamental metabolical functions of these cells such as glutamate turnover and lactic acid accumulation.  相似文献   

2.
Amino acid contents were measured in 1- and 3-week-old primary cultures of astrocytes and in their incubation media, an amino acid-free salt solution with or without glucose, during 3-h incubation under normoxic or anoxic conditions. Most essential amino acids were rapidly released to the medium during the beginning of the incubation. A subsequent slow medium increase reflected proteolysis. Glutamate and aspartate were absent from the media during all conditions, indicating fueling of their uptake by either glycolytically or oxidatively derived energy. The total content of glutamine increased, except during incubation in glucose-deprived media, when it declined or remained constant. Changes in aspartate were negligible, suggesting oxidative degradation of aspartate-derived oxaloacetate during normoxia and its reduction to succinate during anoxia, driving regeneration of NAD+ from NADH. An increase of alanine was reduced in glucose-free media, whereas serine showed especially large increase during isolated glucose deprivation, suggesting its production from glutamine via 3-phosphoglycerate.  相似文献   

3.
Conifers are the most important group of gymnosperms, which include tree species of great ecological and economic importance that dominate large ecosystems and play an essential role in global carbon fixation. Nitrogen (N) economy has a special importance in these woody plants that are able to cope with seasonal periods of growth and development over a large number of years. As N availability in the forest soil is extremely low, efficient mechanisms are required for the assimilation, storage, mobilization, and recycling of inorganic and organic forms of N. The cyclic interconversion of arginine and the amides glutamine and asparagine plays a central role in the N metabolism of conifers and the regulation of these pathways is of major relevance to the N economy of the plant. In this paper, details of recent progress in our understanding of the metabolism of arginine and the other major amino acids glutamine, glutamate, aspartate, and asparagine in pine, a conifer model tree, are presented and discussed.  相似文献   

4.
Sugarcane cell cultures were obtained from callus formed on explants derived from young expanding leaves of two early maturing sugarcane varieties viz “CoJ83” and “CoJ86”. The cell cultures were varied with different arginine concentrations in the culture medium. For each cultivar, sucrose content with 20 μM arginine in the culture medium decreased from 3 to 5 days and then increased to 10 days after subculturing. Higher concentration of arginine in the culture medium (60 μM) decreased the sucrose content at different days after subculturing and thus significantly stimulated sucrose mobilization. The activity of sucrose synthase and sucrose phosphate synthase reached maximum while the activity of acid and neutral invertase was minimal in the culture medium with 20 μM arginine. Thus arginine at low concentration (20 μM) enables the cells to accumulate the higher level of sucrose. The optimum level of amino acids can be utilized to regulate the in vivo activity of sucrose synthase, sucrose phosphate synthase and invertase to achieve maximum sucrose accumulation in sugarcane storage tissue.  相似文献   

5.
In 50 cell suspension cultures of wide taxonomic origin, formation of trigonelline and nicotinic acid N-α-l-arabinoside from nicotinate was strictly alternative. The arabinoside was only found in cell cultures of the subclass Asteridae and in the higher orders of the subclasses Rosidae and Dilleniidae. Degradation of nicotinic acid could only be observed in cell cultures producing the arabinoside. Nicotinic acid degradation does not involve free 6-hydroxynicotinic acid. Cross feeding experiments with both conjugates and measurements of a nicotinic acid N-arabinoside: UDP-arabinosyltransferase support the hypothesis that metabolism of these two derivatives in cell cultures may be of chemosystematic value. Finally various discrepancies between plants and cell cultures with respect to nicotinate metabolism and to the natural occurrence of the two conjugates are discussed.  相似文献   

6.
Binding of [3H]PDB has been measured in the present study to determine the levels of protein kinase C in the neuronal and astrocytic glial cells in culture from rat brain. Binding of [3H]PDB to homogenates of cultured neuronal cells from the brains of normotensive and hypertensive rats was time-dependent and specific. The relative potency for competition by various phorbol esters to [3H]PDB binding was TPA > -PDD > POE > -PDD 4phorbol. Scatchard analysis showed that neuronal cultures from normotensive rat brains contained 2–3 fold more phorbol ester receptors compared with the glial cultures from the same brains. No differences in theK d andB max were observed between neuronal cultures from normotensive and spontaneously hypertensive rat brains. These studies suggest that the phorbol ester receptors are primarily localized in neuronal cells.  相似文献   

7.
Isolated livers were exposed to hypotonic perfusates. As shown previously, this hypotonic challenge leads to initial cell swelling, followed by volume regulatory ion fluxes, largely restoring cell volume within approximately 6 min. However, the hepatocyte is left in an altered metabolic state, which is characterized by marked stimulation of hepatic glutamine uptake and degradation and transient release of glutamate from the liver. Urea formation from glutamine and alanine is stimulated, whereas hepatic ammonia uptake and utilization for urea and glutamine synthesis decreases. These observations reveal a hitherto unrecognized factor modulating hepatic function during intestinal absorption.  相似文献   

8.
Ethanol-induced lipid peroxidation was studied in primary rat hepatocyte cultures supplemented with ethanol at the concentration of 50 mM. Lipid peroxidation was assessed by two indices: (1) conjugated dienes by second-derivative UV spectroscopy in lipid extract of hepatocytes (intracellular content), and (2) free malondialdehyde (MDA) by HPLC-UV detection and quantitation for the incubation medium (extracellular content). In cultures supplemented with ethanol, free MDA increased significantly in culture media, whereas no elevation of conjugated diene level was observed in the corresponding hepatocytes. The cellular pool of low-mol-wt (LMW) iron was also evaluated in the hepatocytes using an electron spin resonance procedure. An early increase of intracellular LMW iron (≤1 hr) was observed in ethanol-supplemented cultures; it was inhibited by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, whereas α-tocopherol, which prevented lipid peroxidation, did not inhibit the increase of LMW iron. Therefore, the LMW iron elevation was the result of ethanol metabolism and was not secondarily induced by lipid hydroperoxides. Thus, ethanol caused lipid peroxidation in rat hepatocytes as shown by the increase of free MDA, although no conjugated diene elevation was detected. During ethanol metabolism, an increase in cellular LMW iron was observed that could enhance conjugated diene degradation.  相似文献   

9.
The levels of folate derivatives in division synchronized cultures of Euglena gracilis Klebs (strain Z) increased rapidly on a per cell basis durin  相似文献   

10.
This work presents data on the carbohydrate and amino acid metabolism of a lymphoblastoid cell line producing an IgG1 antibody. In static culture, it was observed that lactate levels were significantly lowered when the cells were cultured on galactose as a carbon source. The use of carbohydrate substitution may be useful in lowering lactate levels, if it is established that this component is toxic to the cells. In addition, carbohydrate substitution may be used to modify glycosylation patterns and hence pharmacokinetic properties of glycoproteins.The amino acids glutamine and tryptophan were shown to be limiting in batch culture on this medium (DR, a 1:1 mixture of DMEM and RPMI, with 4mM glutamine). Amino acids produced included alanine, proline and glutamate. Serine was consumed to exhaustion, which was followed by a depletion of extracellular glycine. Amino acid metabolism, specific antibody productivity and specific growth rate were shown to be functions of the inoculation density in stirred flask culture. The results have implications for the design of media for both low and high density antibody manufacture by these cell lines.  相似文献   

11.
The intracellular ATP and amino acid concentrations were determined in human fibroblast cultures reaching confluence. The values obtained were very different, depending on the cell harvesting method: trypsinization or scraping. Trypsinization appeared to be the better method for measuring the ATP concentrations (21.25 +/- 0.96 nmol per mg cell protein), this level being much lower with scraping. On the contrary, scraping was the most appropriate method for amino acid measurement. This work underlines the importance of harvesting methods for metabolic studies in human cell cultures.  相似文献   

12.
In the present work, we examined the feasibility of using cardosins, plant aspartic-proteinases from Cynara cardunculus L., to isolate cells from rat embryonic brain. Using morphological and functional assays, we compared cell cultures obtained with cardosins with those prepared with a well-established trypsin protocol. Cardosins and trypsin dissociation produced cells with similar yield, viability, and GABA release in response to a depolarizing stimulus. However, cardosins-dissociated cells appeared to recover faster in culture, as assessed by the MTT-test and by the number and length of neurtites, suggesting that cardosins are less aggressive to neurons than trypsin. This feature might be helpful for research and medical purposes requiring fast manipulations of cells.  相似文献   

13.
Cell culture of Taxus cuspidata represents an alternative to whole plant extraction as a source of taxol and related taxanes. Feeding phenylalanine to callus cultures was previously shown to result in increased taxol yields, probably due to the involvement of this amino acid as a precursor for the N-benzoylphenylisoserine side chain of taxol. Inthis study, we have examined the effect of various concentrations of phenylalanine, benzoic acid, N-benzoylglycine, serine, glycine, alanine, and 3-amino-3-phenyl-propionic acid on taxol accumulation in 2-year-old cell suspensions of Taxus cuspidata, cell line FCL1F, and in developing callus cultures of T. cuspidata. All compounds tested were included in media at stationary phase (suspensions) or after the period of fastest growth (calli). Alanine and 3-amino-3-phenyl-propionicacid were tested only in callus cultures and did not affect taxol accumulation. Significant increases or trends toward increases in taxol accumulationin callus and suspensions were observed in the presence of phenylalanine, benzoic acid, N-benzoylglycine, serine, and glycine. The greatest increases in taxol accumulation were observed in the presence of various concentrations of phenylalanine (1 mM for callus; 0.05, 0.1, and 0.2 mM for suspensions) and benzoic acid (0.2 and 1 mM for callus and 0.05, 0.1, and 0.2 mM for suspensions). Increases in taxol yields of cell suspensions in the presence of the most effective precursors brought taxol amounts at stationary phase from 2 mug . g(-1) to approximately 10 mug . g(-1) of the extracted dry weight. The results are discussed in termsof possible implications to taxol biosynthesis and in terms of practical applications to large-scale cell culture systems for the production ofthis drug. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
The plant growth regulator 2-chloroethylphosphonic acid (CEPA) slightly inhibited the elongation of growth in Pennisetum typhoides seedlings, but greatly stimulated the activity of alanine aminotransferase (GPT), asparate aminotransferase (GOT), as well as glutamate dehydrogenase (GLDH).  相似文献   

15.
To explore glutamine family amino acid metabolism of eight liver cell types in rat liver regeneration, eight kinds of rat regenerating liver cells were isolated by using the combination of Percoll density gradient centrifugation and immunomagnetic bead methods, then Rat Genome 230 2.0 Array was used to detect the expression profiles of the genes associated with metabolism of glutamine family amino acid in rat liver regeneration and finally how these genes involved in activities of eight regenerating liver cell types were analysed by the methods of bioinformatics and systems biology. The results showed that in the priming stage of liver regeneration, hepatic stellate cells and sinusoidal endothelial cells transformed proline and glutamine into glutamate; hepatocytes, hepatic stellate cells, sinusoidal endothelial cells and dendritic cells catabolized glutamate to 2‐oxoglutarate or succinate; hepatic stellate cells and sinusoidal endothelial cells catalysed glutamate into glutamyl‐tRNA for protein synthesis; urea cycle, which degraded from arginine, was enhanced in biliary epithelia cells, sinusoidal endothelial cells and dendritic cells; synthesis of polyamines from arginine was enhanced in biliary epithelia cells, sinusoidal endothelial cells, Kupffer cells and dendritic cells; the content of NO was increased in sinusoidal endothelial cells and dendritic cells; degradation of proline was enhanced in hepatocytes and biliary epithelia cells. In the progress stage, biliary epithelia cells converted glutamine into GMP and glucosamine 6‐phosphate; oval cells converted glutamine into glucosamine 6‐phosphate; hepatic stellate cells converted glutamine into NAD; the content of NO, which degraded from arginine, was increased in biliary epithelia cells, oval cells, pit cells and dendritic cells. In the termination stage, oval cells converted proline into glutamate; glutamate degradation, which degraded from arginine, was enhanced in hepatocytes and dendritic cells; the content of NO was increased in oval cells, sinusoidal endothelial cells, pit cells and dendritic cells. The synthesis of creatine phosphate was enhanced in hepatocytes, biliary epithelia cells, pit cells and dendritic cells in both progress and termination stages. In summary, glutamine family amino acid metabolism has some differences in liver regeneration in different liver cells.  相似文献   

16.
Aphids are highly specialized insects that feed on the phloem-sap of plants, the amino acid composition of which is very unbalanced. Amino acid metabolism is thus crucial in aphids, and we describe a novel investigation method based on the use of 14C-labeled amino acids added in an artificial diet. A metabolism cage for aphids was constructed, allowing for the collection and analysis of the radioactivity incorporated into the aphid body, expired as CO2, and rejected in the honeydew and exuviae. This method was applied to the study of the metabolism of eight energetic amino acids (aspartate, glutamate, glutamine, glycine, serine, alanine, proline, and threonine) in the pea aphid, Acyrthosiphon pisum. All these amino acids except threonine were subject to substantial catabolism as measured by high 14CO2 production. The highest turnover was displayed by aspartate, with 60% of its carbons expired as CO2. For the first time in an aphid, we directly demonstrated the synthesis of three essential amino acids (threonine, isoleucine, and lysine) from carbons of common amino acids. The synthesis of these three compounds was only observed from amino acids that were previously converted into glutamate. This conversion was important for aspartate, and lower for alanine and proline. To explain the quantitative results of interconversion between amino acids, we propose a compartmentation model with the intervention of bacterial endosymbiotes for the synthesis of essential amino acids and with glutamate as the only amino acid supplied by the insect to the symbiotes. Moreover, proline exhibited partial conversion into arginine, and it is suggested that proline is probably indirectly involved in excretory nitrogen metabolism. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Exposure to ozone induced a rapid increase in the levels of the phytohormone abscisic acid (ABA) and sequentially followed by the enhancement of Taxol production in suspension cell cultures of Taxus chinensis. The observed increases in ABA and Taxol were dependent on the concentration of ozone applied to T. chinensis cell cultures. To examine the role of ABA in ozone‐induced Taxol production, we pretreated the cells with ABA biosynthesis inhibitor fluridone to abolish ozone‐triggered ABA generation and assayed the effect of fluridone on ozone‐induced Taxol production. The results showed that pretreatment of the cells with fluridone not only suppressed the ozone‐triggered ABA generation but also blocked the ozone‐induced Taxol production. Moreover, our data indicate that the effect of ABA on Taxol production of T. chinensis cell cultures is dose‐dependent. Interestingly, the suppression of fluridone on ozone‐induced Taxol production was reversed by exogenous application of low dose of ABA, although treatment of low dose ABA alone had no effect on Taxol production of the cells. Together, the data indicated that ozone was an efficient elicitor for improving Taxol production of plant cell cultures. Furthermore, we demonstrated that ABA played critical roles in ozone‐induced Taxol production of T. chinensis suspension cell cultures. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

18.
The growing interest in rosmarinic acid (RA), an ester of caffeic acid and 3,4‐dihydroxyphenyl lactic acid, is due to its biological activities, which include cognitive‐enhancing effects, slowing the development of Alzheimer's disease, cancer chemoprotection, and anti‐inflammatory activity. Inspired by the challenge of meeting the growing demand for this plant secondary metabolite, we developed a biotechnological platform based on cell suspension cultures of Satureja khuzistanica. The high amounts of RA produced by this system accumulated mainly inside the cells. To further improve production, two elicitors, 100 μM methyl jasmonate (MeJA) and 40 mM cyclodextrin (CD), were tested, separately and together. MeJA increased RA productivity more than 3‐fold, the elicited cultures achieving an RA production of 3.9 g L?1 without affecting biomass productivity. CD did not have a clear effect on RA production, and under the combined treatment of MeJA + CD only a small amount of RA was released to the medium. When the cell culture was transferred from a shake flask to a wave‐mixed bioreactor, a maximum RA production of 3.1 g L?1 and biomass productivity of 18.7 g L?1 d?1 was achieved under MeJA elicitation, demonstrating the suitability of S. khuzistanica cell suspensions for the biotechnological production of this bioactive plant secondary metabolite.  相似文献   

19.
Summary An in vitro model to study myocardial cell injury was developed with primary monolayer cultures of rat myocardial cells. Two important conditions associated with myocardial ischemia were simulated by depriving the cultures of oxygen and glucose for a specified period of time. Cellular injury caused by hypoxia and glucose deprivation resulted in significant leakage of lactate dehydrogenase (LDH) from the cells into the culture medium. The cells were not lethally injured by treatments as reflected by a lack of change in cell viability and protein content when compared to controls. Pretreatment of cultures with methylprednisolone for 24 hr provided protection to the cells when challenged by hypoxia and glucose deprivation. Methylprednisolone exhibited a dose-response effect in reducing LDH leakage in cultures, which were subsequently deprived of oxygen and glucose for 4 hr. Similar pretreatment with hydrocortisone had no effect in limiting cellular injury in hypoxic and glucose-deprived cultures. The research was supported by Grant HL 18647 from the National Heart, Lung, and Blood Institute and by a National Chicano Council on Higher Education Post-Doctoral Fellowship awarded to D. Acosta from the Ford Foundation. Additional support was provided to D. Acosta by a Faculty Research Assignment Award from the University of Texas Research Institute.  相似文献   

20.
The antiproliferative effects of the iron chelator O-trensox and the ornithine-decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) were characterized in the rat hepatoma cell line FAO, the rat liver epithelial cell line (RLEC) and the primary rat hepatocyte cultures stimulated by EGF. We observed that O-trensox and DFMO decreased cell viabilty and DNA replication in the three culture models. The cytostatic effect of O-trensox was correlated to a cytotoxicity, higher than for DFMO, and to a cell cycle arrest in G0/G1 or S phases. Moreover, O-trensox and DFMO decreased the intracellular concentration of spermidine in the three models without changing significantly the spermine level. We concluded that iron, but also polyamine depletion, decrease cell growth. However, the drop in cell proliferation obtained with O-trensox was stronger compared to DFMO effect. Altogether, our data provide insights that, in the three rat liver cell culture models, the cytostatic effect of the iron chelator O-trensox may be the addition of two mechanisms: iron and polyamine depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号