首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trigonella foenum-graecum L. (fenugreek) has been described earlier and its use in ancient medicinal practice is well known. The hypoglycemic effects of fenugreek have been studied in many animal models and diabetic patients. The purpose of this study was to examine the preventive efficiency of dietary fenugreek on diet-induced metabolic diseases in rats. The diets used in this study were a standard diet, a high-fat high-sucrose (HFS) diet, and a HFS diet containing 0.5?g/kg b.?w./day fenugreek based on the modified version of the AIN-93G purified diet, for 12 weeks, respectively. The rats fed the HFS diet containing fenugreek showed significantly lower fasting insulin levels and HOMA-IR than the rats fed the HFS diet. Therefore, fenugreek improved insulin sensitivity in rats. The triglyceride and total cholesterol levels in the plasma were significantly lower in the fenugreek-administered group. Moreover, distinct reductions of triglyceride, total cholesterol, free fatty acid, and phospholipid levels in the liver were found in the rats fed the HFS diet containing fenugreek. These results suggest that fenugreek enhanced insulin sensitivity at least partly by improving lipid metabolism disorders in the plasma and the liver in the rats induced by the HFS diet.  相似文献   

2.
The synthetic compound NO-1886 is a lipoprotein lipase activator that lowers plasma triglycerides and elevates high-density lipoprotein cholesterol (HDL-C). Recently, the authors found that NO-1886 also had an action of reducing plasma glucose in high-fat/high-sucrose diet–induced diabetic rabbits. In the current study, we investigated the effects of NO-1886 on insulin resistance and β-cell function in rabbits. Our results showed that high-fat/high-sucrose feeding increased plasma triglyceride, free fatty acid (FFA), and glucose levels and decreased HDL-C level. This diet also induced insulin resistance and impairment of acute insulin response to glucose loading. Supplementing 1% NO-1886 into the high-fat/high-sucrose diet resulted in decreased plasma triglyceride, FFA, and glucose levels and increased HDL-C level. The authors also found a clear increased glucose clearance and a protected acute insulin response to intravenous glucose loading by NO-1886 supplementation. These data suggest that NO-1886 suppresses the elevation of blood glucose in rabbits induced by feeding a high-fat/high-sucrose diet, probably through controlling lipid metabolism and improving insulin resistance.  相似文献   

3.
The methanol extract of Dypsis lutescens leaves showed inhibitory effects on lipase activity in vitro and on triglyceride accumulation in 3T3-L1 pre-adipocytes. Further experiments using the extract on mice demonstrated a suppressive effect on the postprandial elevation of blood triglyceride level and an anti-obesity effect on obese mice induced by a high-fat diet. D. lutescens will accordingly be useful for preventing obesity.  相似文献   

4.
The effects of extra virgin olive oil (EV-olive oil) on triglyceride metabolism were investigated by measuring the degree of thermogenesis in interscapular brown adipose tissue (IBAT) and the rates of noradrenaline and adrenaline secretions in rats, both in vivo and in situ. In Experiment 1 (in vivo), rats were given an isoenergetic high-fat diet (30% fat diet) containing corn oil, refined olive oil, or EV-olive oil. After 28 days of feeding, the final body weight, weight gain, energy efficiency, perirenal adipose tissue and epididymal fat pad and plasma triglyceride concentrations were the lowest in the rats fed the EV-olive oil diet. The content of uncoupling protein 1 (UCP1) in IBAT and the rates of urinary noradrenaline and adrenaline excretions were the highest in the rats fed the EV-olive oil diet. In Experiment 2 (in situ), the effects of the extract of the phenolic fraction from EV-olive oil and a compound having excellent characteristics as components of EV-olive oil, hydroxytyrosol, on noradrenaline and adrenaline secretions were evaluated. The intravenous administration of the extract of the phenolic fraction from EV-olive oil significantly increased plasma noradrenaline and adrenaline concentrations, whereas that of hydroxytyrosol had no effect. These results suggest that phenols except hydroxytyrosol in EV-olive oil enhance thermogenesis by increasing the UCP1 content in IBAT and enhancing noradrenaline and adrenaline secretions in rats.  相似文献   

5.
An ethanol extract of fucoxanthin-rich seaweed was examined for its effectiveness as a nutraceutical for body fat-lowering agent and for an antiobese effect based on mode of actions in C57BL/6J mice. Animals were randomized to receive a semi-purified high-fat diet (20% dietary fat, 10% corn oil and 10% lard) supplemented with 0.2% conjugated linoleic acid (CLA) as the positive control, 1.43% or 5.72% fucoxanthin-rich seaweed ethanol extract (Fx-SEE), equivalent to 0.05% or 0.2% dietary fucoxanthin for six weeks. Results showed that supplementation with both doses of Fx-SEE significantly reduced body and abdominal white adipose tissue (WAT) weights, plasma and hepatic triglyceride (TG), and/or cholesterol concentrations compared to the high-fat control group. Activities of adipocytic fatty acid (FA) synthesis, hepatic FA and TG synthesis, and cholesterol–regulating enzyme were also lowered by Fx-SEE supplement. Concentrations of plasma high-density lipoprotein-cholesterol, fecal TG and cholesterol, as well as FA oxidation enzyme activity and UCP1 mRNA expression in epididymal WAT were significantly higher in the Fx-SEE groups than in the high-fat control group. CLA treatment reduced the body weight gain and plasma TG concentration. Overall, these results indicate that Fx-SEE affects the plasma and hepatic lipid profile, fecal lipids and body fat mass, and alters hepatic cholesterol metabolism, FA synthesis and lipid absorption.  相似文献   

6.
This study explores the anti-obesity properties of a Sasa quelpaertensis leaf extract (SQE) in high-fat diet (HFD)-induced obese C57BL/6 mice and mature 3T3-L1 adipocytes. SQE administration with HFD for 70 d significantly decreased the body weight gain, adipose tissue weight, and serum total cholesterol and triglyceride levels in comparison with the HFD group. SQE administration also reduced the serum levels of glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and lactate dehydrogenase, and the accumulation of lipid droplets in the liver, suggesting a protective effect against HFD-induced hepatic steatosis. SQE administration restored the HFD-induced decreases with phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in epididymal adipose tissue. SQE also induced AMPK phosphorylation in mature 3T3-L1 adipocytes. These results suggest that SQE exerted an anti-obesity effect on HFD-induced obese mice by activating AMPK in adipose tissue and reducing lipid droplet accumulation in the liver.  相似文献   

7.
Plasma carnitine and triglycerides were measured in five male Macaca arctoides and one female Macaca nemistrina during the course of feeding a low-fat (5.2% w/w), high carbohydrate diet and a high-fat (15.9% w/w), low carbohydrate diet. For each individual monkey, an inverse relationship was observed between plasma carnitine and triglyceride levels when the low-fat diet was fed but not when the high-fat diet was fed. The mechanism of the different responses to diet was not investigated but may be related to the primary source of the plasma triglycerides (i.e. endogenous origin or exogenous origin) or to differing hormonal effects. A close coupling between carnitine and triglyceride metabolism may be part of a sensitive homeostatic control mechanism that responds to endogenously-synthesized triglyceride.  相似文献   

8.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by metabolic disturbances in specific tissues. The present work aimed to analyze the effects of xanthohumol (XN) and 8-prenylnaringenin (8PN), two beer-derived polyphenols, in liver and skeletal muscle lipid and glycolytic metabolism in T2DM mice model. Thirty C57Bl/6 mice were randomly divided into five groups: standard diet (control), high-fat diet (DM), high-fat diet plus ethanol (DM-Ethanol), high-fat diet plus 10 mg/L XN (DM-XN) and high-fat diet plus 10 mg/L 8PN (DM-8PN) during 20 weeks. Fasting blood glucose and insulin tolerance tests were performed 1 week before sacrifice. At the end of the study, blood, liver and skeletal muscle were collected. Both XN and 8PN treatments prevented body weight gain; decreased glycemia, triglyceride, cholesterol and alkaline phosphatase levels; and improved insulin sensitivity. Polyphenols promoted hepatic and skeletal muscle AMP-activated protein kinase (AMPK) activation, diminishing the expression of target lipogenic enzymes (sterol regulatory element binding protein-1c and fatty acid synthase) and acetyl-CoA carboxylase activity. Moreover, both XN and 8PN treatments decreased VEGFR-1/VEGFB pathway, involved in fatty acid uptake, and increased AS160 expression, involved in GLUT4 membrane translocation. Presented data demonstrated that both XN and 8PN treatment resulted in AMPK signaling pathway activation, thus suppressing lipogenesis. Their consumption prevented body weight gain and improved plasma lipid profile, with significant improvement of insulin resistance and glucose tolerance. XN- or 8PN-enriched diet could ameliorate diabetic-associated metabolic disturbances by regulating glucose and lipid pathways.  相似文献   

9.
Recent studies have shown a link between obesity and endoplasmic reticulum (ER) stress. Perturbations in ER homeostasis cause ER stress and activation of the unfolded protein response (UPR). Adipocyte differentiation contributes to weight gain, and we have shown that markers of ER stress/UPR activation, including GRP78, phospho-eIF2α, and spliced XBP1, are upregulated during adipogenesis. Given these findings, the objective of this study was to determine whether attenuation of UPR activation by the chemical chaperone 4-phenylbutyrate (4-PBA) inhibits adipogenesis. Exposure of 3T3-L1 preadipocytes to 4-PBA in the presence of differentiation media decreased expression of ER stress markers. Concomitant with the suppression of UPR activation, 4-PBA resulted in attenuation of adipogenesis as measured by lipid accumulation and adiponectin secretion. Consistent with these in vitro findings, female C57BL/6 mice fed a high-fat diet supplemented with 4-PBA showed a significant reduction in weight gain and had reduced fat pad mass, as compared with the high-fat diet alone group. Furthermore, 4-PBA supplementation decreased GRP78 expression in the adipose tissue and lowered plasma triglyceride, glucose, leptin, and adiponectin levels without altering food intake. Taken together, these results suggest that UPR activation contributes to adipogenesis and that blocking its activation with 4-PBA prevents adipocyte differentiation and weight gain in mice.  相似文献   

10.
Reduced mitochondrial fatty acid (FA) β-oxidation can cause accumulation of triglyceride in liver, while intake of eicosapentaenoic acid (EPA) has been recommended as a promising novel therapy to decrease hepatic triglyceride content. However, reduced mitochondrial FA β-oxidation also facilitates accumulation of EPA. To investigate the interplay between EPA administration, mitochondrial activity and hepatic triglyceride accumulation, we investigated the effects of EPA administration to carnitine-deficient mice with impaired mitochondrial FA β-oxidation. C57BL/6J mice received a high-fat diet supplemented or not with 3% EPA in the presence or absence of 500 mg mildronate/kg/day for 10 days. Liver mitochondrial and peroxisomal oxidation, lipid classes and FA composition were determined. Histological staining was performed and mRNA level of genes related to lipid metabolism and inflammation in liver and adipose tissue was determined. Levels of pro-inflammatory eicosanoids and cytokines were measured in plasma. The results showed that mildronate treatment decreased hepatic carnitine concentration and mitochondrial FA β-oxidation and induced severe triglyceride accumulation accompanied by elevated systemic inflammation. Surprisingly, inclusion of EPA in the diet exacerbated the mildronate-induced triglyceride accumulation. This was accompanied by a considerable increase of EPA accumulation while decreased total n-3/n-6 ratio in liver. However, inclusion of EPA in the diet attenuated the mildronate-induced mRNA expression of inflammatory genes in adipose tissue. Taken together, dietary supplementation with EPA exacerbated the triglyceride accumulation induced by impaired mitochondrial FA β-oxidation. Thus, further thorough evaluation of the potential risk of EPA supplementation as a therapy for NAFLD associated with impaired mitochondrial FA oxidation is warranted.  相似文献   

11.
A new and convenient animal model for studying peripheral vascular and coronary artery disease in diabetes was established in this study. Male New Zealand White rabbits weighing approximately 2 kg were divided into 2 groups: a normal control group fed standard laboratory chow and a diabetogenic diet–fed group received a high-fat/high-sucrose diet. The high-fat/high-sucrose diet (contained 10% lard and 37% sucrose) feeding was maintained for 6 months. Plasma total cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride, superoxide dismutase, nitric oxide, nitric oxide synthase, insulin, and glucose were quantitated at monthly or bimonthly intervals. The aortic fatty streak lesions were quantified following lipid staining with Sudan IV. The aortic samples were observed by electron microscopy. High plasma triglyceride and glucose concentrations were induced. At the end of 6 months, the aortic fatty streak lesions were present in the animals'' vascular specimens. As far as we know, this is the first report that demonstrates that New Zealand White rabbits can develop obvious aortic fatty streaks by feeding a high-fat/high-sucrose diet. Our results suggest that NewZealand White rabbits fed a high-fat/high-sucrose diet would provide a convenient model for studying peripheral vascular and coronary artery disease in diabetes.  相似文献   

12.
The aim of the present study was to investigate body fat-suppressive effects of green tea in rats fed on a high-fat diet and to determine whether the effect is associated with beta-adrenoceptor activation of thermogenesis in brown adipose tissue. Feeding a high-fat diet containing water extract of green tea at the concentration of 20g/kg diet prevented the increase in body fat gain caused by high-fat diet without affecting energy intake. Energy expenditure was increased by green tea extract which was associated with an increase in protein content of interscapular brown adipose tissue. The simultaneous administration of the beta-adrenoceptor antagonist propranolol(500 mg/kg diet) inhibited the body fat-suppressive effect of green tea extract. Propranolol also prevented the increase in protein content of interscapular brown adipose tissue caused by green tea extract. Digestibility was slightly reduced by green tea extract and this effect was not affected by propranolol. Therefore it appeared that green tea exerts potent body fat-suppressive effects in rats fed on a high-fat diet and the effect was resulted in part from reduction in digestibility and to much greater extent from increase in brown adipose tissue thermogenesis through beta-adrenoceptor activation.  相似文献   

13.
Group 1B phospholipase A2 (PLA2) is an abundant lipolytic enzyme that is well characterized biochemically and structurally. Because of its high level of expression in the pancreas, it has been presumed that PLA2 plays a role in the digestion of dietary lipids, but in vivo data have been lacking to support this theory. Our initial study on mice lacking PLA2 demonstrated no abnormalities in dietary lipid absorption in mice consuming a chow diet. However, the effects of PLA2 deficiency on animals consuming a high-fat diet have not been studied. To investigate this, PLA2(+/+) and PLA2(-/-) mice were fed a western diet for 16 wk. The results showed that PLA2(-/-) mice were resistant to high-fat diet-induced obesity. This observed weight difference was due to decreased adiposity present in the PLA2(-/-) mice. Compared with PLA2(+/+) mice, the PLA2(-/-) mice had 60% lower plasma insulin and 72% lower plasma leptin levels after high-fat diet feeding. The PLA2(-/-) mice also did not exhibit impaired glucose tolerance associated with the development of obesity-related insulin resistance as observed in the PLA2(+/+) mice. To investigate the mechanism by which PLA(2)(-/-) mice exhibit decreased weight gain while on a high-fat diet, fat absorption studies were performed. The PLA(2)(-/-) mice displayed 50 and 35% decreased plasma [(3)H]triglyceride concentrations 4 and 6 h, respectively, after feeding on a lipid-rich meal containing [(3)H]triolein. The PLA(2)(-/-) mice also displayed increased lipid content in the stool, thus indicating decreased fat absorption in these animals. These results suggest a novel role for PLA(2) in the protection against diet-induced obesity and obesity-related insulin resistance, thereby offering a new target for treatment of obesity and diabetes.  相似文献   

14.
Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein.  相似文献   

15.
《Phytomedicine》2014,21(5):607-614
The aim of this study was to determine whether the Rehmannia glutinosa oligosaccharides (ROS) ameliorate the impaired glucose metabolism and the potential mechanism in chronic stress rats fed with high-fat diet. The rats were fed by a high-fat diet and simultaneously stimulated by chronic stress over 5 weeks. Body weight, fasting plasma glucose, intraperitoneal glucose tolerance test (IPGTT), plasma lipids, gluconeogenesis test (GGT), glycogen content, and corticosterone, insulin and leptin levels were measured. The results showed that ROS administration (100, 200 mg/kg, i.g.) for 5 weeks exerted the effects of increasing the organ weights of thymus and spleen, lowering the fasting plasma glucose level, improving impaired glucose tolerance, increasing the contents of liver and muscle glycogen, decreasing the gluconeogenesis ability, plasma-free fatty acid's level, as well as plasma triglyceride and total cholesterol levels in chronic stress and high-fat fed rats, especially in the group of 200 mg/kg; while the plasma corticosterone level was decreased, and plasma leptin level was increased. These results suggest that ROS exert an ameliorating effect of impaired glucose metabolism in chronic stress rats fed with high-fat diet, and the potential mechanism may be mediated through rebuilding the glucose homeostasis in the neuroendocrine immuno-modulation (NIM) network through multilinks and multitargets.  相似文献   

16.
The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic insulin were restored to levels of chow-fed mice, and circulating triglyceride and cholesterol were significantly decreased. (Pro(3))GIP treatment also significantly decreased circulating glucagon and corticosterone, but concentrations of GLP-1, GIP, resistin, and adiponectin were unchanged. Adipose tissue mass, adipocyte hypertrophy, and deposition of triglyceride in liver and muscle were significantly decreased. These changes were accompanied by significant improvement of insulin sensitivity, meal tolerance, and normalization of glucose tolerance in (Pro(3))GIP-treated high-fat-fed mice. (Pro(3))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet.  相似文献   

17.
Nonalcoholic steatohepatitis in rats induced by the high-fat diet was used as an experimental model for testing hepatoprotective properties of drug based on water-ethanol extract from oyster mushroom mycelium. Progression of pathology development was monitored histologically and by biochemical assay of blood samples. Subcellular response was analyzed using electron microscopy. It was shown that administration of the high-fat diet for 14 days leads to a development of adipose degeneration of liver (steatosis). Histological evidences were confirmed biochemically. Alkaline phosphatase, bilirubin, free cholesterol and lowdensity lipoprotein cholesterol levels were increased in blood of experimental animals in comparison to control. Administration of the drug was performed in parallel with high-fat food. It was shown that pathological alterations of liver in this case were reduced at both organ and cellular levels. Cholesterol and triglyceride levels were close to those in control animals. The data obtained confirm that the drug assayed can be used in clinical practice for prevention and treatment of nonalcoholic steatohepatitis.  相似文献   

18.
Effects of astaxanthin in obese mice fed a high-fat diet   总被引:2,自引:0,他引:2  
Astaxanthin is a natural antioxidant carotenoid that occurs in a wide variety of living organisms. We investigated the effects of astaxanthin supplementation in obese mice fed a high-fat diet. Astaxanthin inhibited the increases in body weight and weight of adipose tissue that result from feeding a high-fat diet. In addition, astaxanthin reduced liver weight, liver triglyceride, plasma triglyceride, and total cholesterol. These results suggest that astaxanthin might be of value in reducing the likelihood of obesity and metabolic syndrome in affluent societies.  相似文献   

19.
Studies were carried out to evaluate the impact of a high-fat dietary regimen on aortic wall thickness, peripheral blood leukocyte profile, and plasma cholesterol and triglyceride levels in the mast cell-deficient Sl/Sl(d) mouse. The results demonstrated that the mean aortic wall thickness of Sl/Sl(d) mice was significantly higher than their normal littermates, and were increased in both genotypes after a 17-day high-fat regimen. In comparison with normal littermates, Sl/Sl(d) genotypes had elevated levels of plasma triglycerides with normal levels of plasma cholesterol, and the high-fat diet markedly lowered the triglyceride levels. Total peripheral blood leukocytes, the monocyte and granulocyte counts, and hemoglobin levels were significantly lower in Sl/Sl(d) mice, although the number of lymphocytes, eosinophils and basophils were the same in both genotypes. Interestingly, the high-fat diet regimen elevated leukocyte counts and the number of monocytes and granulocytes in Sl/Sl(d) mice.  相似文献   

20.
Obesity is one of the major public health problems worldwide and it is generally associated with many diseases. Although synthetic drugs are available for the treatment of obesity, herbal remedies may provide safe, natural, and cost-effective alternative to synthetic drugs. One example of such drugs is Melastoma malabathricum var Alba Linn (MM). Although several studies have been reported for the pharmacological activities of MM, there is no report on the anti-obesity effect of MM. The aim of the present study is to evaluate the anti-obesity potential of methanolic extract of MM. The anti-obesity effect of MM on rats fed with a high-fat diet was investigated through determination of the changes in body weight, fat weight, organ weights, and blood biochemicals. The animals in this study were divided into three groups: a normal group with a standard diet (N), a control group fed with high-fat diet (C), and a MM treatment group fed with high-fat (HFD + MM) diet for 8 weeks. There was no significant difference in the amount of food intake between control and HFD + MM treatments. These results also suggest that MM does not induce a dislike for the diet due to its smell or taste. The study shows that MM significantly prevented increases in body weight, cholesterol, LDL, HDL, and total lipids that resulted from the high-fat diet. MM also decreased the epididymal fat (E-fat) and retroperitoneal fat (R-fat) weights and phospholipid concentrations induced by the high-fat diet. On the basis of these findings, it was concluded that MM had anti-obesity effects by suppressing body weight gain and abdominal fat formation.KEY WORDS: Anti-obesity, High-fat diet, Melastoma malabathricum var Alba Linn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号