首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D E Wolf  P Henkart  W W Webb 《Biochemistry》1980,19(17):3893-3904
Fluorescence-labeled trinitrophenylated stearoylated dextrans have been used as controllable analogues of cell membrane proteins on model membranes and on a variety of natural cell membranes. This paper reports their behavior on 3T3 mouse fibroblast plasma membranes. Spatial distribution on the membrane was studied by fluorescence microscopy, and molecular mobility was measured by fluorescence photobleaching recovery. At concentrations from 10(2) to 3 X 10(3) molecules/micron2 essentially homogeneous fluorescence was observed after treatment with these stearoyldextrans in culture. Diffusion coefficients and fractional recovery of fluorescence after photobleaching were cvoncentration independent. For 3 X 10(3) molecules/micron2 we found at 23 degrees C D = (3.0 +/- 1.8) X 10(-10) cm2/s with 65 +/- 17% recovery and at 37 degrees C D = (7.0 +/- 5.0) X 10(-10) cm2/s without a change of the fractional recovery. Cross-linking with antibodies stopped diffusion on a macroscopic scale and sometimes induced patching, mottling (defined as the development of gaps in the fluorescence layer), and capping (defined as the confinement of the fluorescence to less than 50% of the cell). Capping required approximately 3 h at 37 degrees C and was inhibited by metabolic poisons and cytochalasin B. These drugs did not affect stearoyldextran diffusion or fractional recovery. Colchicine, which did not dramatically affect capping, slowed diffusion two- to threefold but did not affect fractional recovery. The antibody inhibition of the diffusion of stearoyldextrans precedent to capping did not affect the diffusion of a lipid probe or fluorescein isothiocyanate labeled membrane proteins. When the trinitrophenylated stearoyldextran was cleared from most of the surface by capping and the surface subsequently relabeled with stearoyldextran, the diffusion coefficient and fractional recovery of the second label were identical with those of the first label prior to capping. Thus, capping does not clear an immobilizing factor from the membrane.  相似文献   

2.
The possibility that LH receptors exist as isolated molecules when unbound and aggregate upon binding gonadotropins has previously been untestable in viable cells for want of a suitable nonhormone probe. We have now expressed in CHO cells an intrinsically-fluorescent LH receptor involving enhanced green fluorescent protein (GFP) fused to the C-terminus of the rat LH receptor (rLHR-GFP). More than half of these receptors (54 +/- 4%) are located on the plasma membrane and are functional: cAMP levels increase 3-5 fold in response to 10 nM LH or hCG. In fluorescence photobleaching recovery studies at 37 degrees C, 54 +/- 13% of unoccupied rLHR-GFP were laterally mobile with a diffusion coefficient D of 16 +/- 3.5 x 10(-10)cm2sec-1. Introduction of 10 nM LH for 1 h slowed receptor lateral diffusion to 6.6 +/- 1.3 x 10(-10)cm2sec-1 and reduced fluorescence recovery after photobleaching to 27 +/- 1%. Following treatment with 1 nM hCG, rLHR-GFP were laterally immobile and were distributed into small fluorescent patches over the cell surface. Thus, unoccupied rLHR-GFP receptors apparently exist as dispersed plasma membrane proteins with comparatively fast lateral diffusion. Interaction of receptors with LH or hCG caused clustering of rLHR-GFP receptors, significantly restricting lateral diffusion.  相似文献   

3.
利用竹红菌乙素自身的荧光特征,在FPR装置上直接测定了乙素在AH细胞内的侧向扩散系数和荧光漂白的恢复率。实验结果表明乙素在AH细胞内的扩散系数D=3.2×10^-9cm^2/s^-1荧光漂白恢复比率R=97.8%,上述实验说明乙素在细胞膜内与生物大分子之间没有形成共价键形式的结合状态。  相似文献   

4.
Frog rod outer segments were labeled with the sulfhydryl-reactive label iodoacetamido tetramethylrhodamine. The bulk of the label reacted with the major disk membrane protein, rhodopsin. Fluorescence photobleaching and recovery (FPR) experiments on labeled rods showed that the labeled proteins diffused rapidly in the disk membranes. In these FPR experiments we observed both the recovery of fluorescence in the bleached spot and the loss of fluorescence from nearby, unbleached regions of the photoreceptor. These and previous experiments show that the redistribution of the fluorescent labeled proteins after bleaching was due to diffusion. The diffusion constant, D, was (3.0 +/- 10(-9) cm2 s-1 if estimated from the rate of recovery of fluorescence in the bleached spot, and (5.3 +/- 2.4) x 10(-9) cm2 s-1 if estimated from the rate of depletion of fluorescence from nearby regions. The temperature coefficient, Q10, for diffusion was 1.7 +/- 0.5 over the range 10 degrees--29 degrees C. These values obtained by FPR are in good agreement with those previously obtained by photobleaching rhodopsin in fresh, unlabeled rods. This agreement indicates that the labeling and bleaching procedures required by the FPR method did not significantly alter the diffusion rate of rhodopsin. Moreover, the magnitude of the diffusion constant for rhodopsin is that to be expected for an object of its diameter diffusing in a bilayer with the viscosity of the disk membrane. In contrast to the case of rhodopsin, FPR methods applied to other membrane proteins have yielded much smaller diffusion constants. The present results help indicate that these smaller diffusion constants are not artifacts of the method but may instead be due to interactions the diffusing proteins have with other components of the membrane in addition to the viscous drag imposed by the lipid bilayer.  相似文献   

5.
The red blood cell membrane is a complex material that exhibits both solid- and liquidlike behavior. It is distinguished from a simple lipid bilayer capsule by its mechanical properties, particularly its shear viscoelastic behavior and by the long-range mobility of integral proteins on the membrane surface. Subject to sufficiently large extension, the membrane loses its shear rigidity and flows as a two-dimensional fluid. These experiments examine the change in integral protein mobility that accompanies the mechanical phenomenon of extensional failure and liquidlike flow. A flow channel apparatus is used to create red cell tethers, hollow cylinders of greatly deformed membrane, up to 36-microns long. The diffusion of proteins within the surface of the membrane is measured by the technique of fluorescence redistribution after photobleaching (FRAP). Integral membrane proteins are labeled directly with a fluorescein dye (DTAF). Mobility in normal membrane is measured by photobleaching half of the cell and measuring the rate of fluorescence recovery. Protein mobility in tether membrane is calculated from the fluorescence recovery rate after the entire tether has been bleached. Fluorescence recovery rates for normal membrane indicate that more than half the labeled proteins are mobile with a diffusion coefficient of approximately 4 x 10(-11) cm2/s, in agreement with results from other studies. The diffusion coefficient for proteins in tether membrane is greater than 1.5 x 10(-9) cm2/s. This dramatic increase in diffusion coefficient indicates that extensional failure involves the uncoupling of the lipid bilayer from the membrane skeleton.  相似文献   

6.
The lateral mobility of alkaline phosphatase (AP) in the plasma membrane of osteoblastic and nonosteoblastic cells was estimated by fluorescence redistribution after photobleaching in embryonic and in tumor cells, in cells that express AP naturally, and in cells transfected with an expression vector containing AP cDNA. The diffusion coefficient (D) and the mobile fraction, estimated from the percent recovery (%R), were found to be cell-type dependent ranging from (0.58 +/- 0.16) X 10(-9) cm2s-1 and 73.3 +/- 10.5 in rat osteosarcoma cells ROS 17/2.8 to (1.77 +/- 0.51) X 10(-9) cm2s-1 and 82.8 +/- 2.5 in rat osteosarcoma cells UMR106. Similar values of D greater than or equal to 10(-9) cm2s-1 with approximately 80% recovery were also found in fetal rat calvaria cells, transfected skin fibroblasts, and transfected AP-negative osteosarcoma cells ROS 25/1. These values of D are many times greater than "typical" values for membrane proteins, coming close to those of membrane lipid in fetal rat calvaria and ROS 17/2.8 cells (D = [4(-5)] X 10(-9) cm2s-1 with 75-80% recovery), estimated with the hexadecanoyl aminofluorescein probe. In all cell types, phosphatidylinositol (PI)-specific phospholipase C released 60-90% of native and transfection-expressed AP, demonstrating that, as in other tissue types, AP in these cells is anchored in the membrane via a linkage to PI. These results indicate that the transfected cells used in this study possess the machinery for AP insertion into the membrane and its binding to PI. The fast AP mobility appears to be an intrinsic property of the way the protein is anchored in the membrane, a conclusion with general implications for the understanding of the slow diffusion of other membrane proteins.  相似文献   

7.
A new model for lateral diffusion, the milling crowd model (MC), is proposed and is used to derive the dependence of the monomeric and excimeric fluorescence yields of excimeric membrane probes on their concentration. According to the MC model, probes migrate by performing spatial exchanges with a randomly chosen nearest neighbor (lipid or probe). Only nearest neighbor probes, one of which is in the excited state, may form an excimer. The exchange frequency, and hence the local lateral diffusion coefficient, may then be determined from experiment with the aid of computer simulation of the excimer formation kinetics. The same model is also used to study the long-range lateral diffusion coefficient of probes in the presence of obstacles (e.g., membrane proteins). The dependence of the monomeric and excimeric fluorescence yields of 1-pyrene-dodecanoic acid probes on their concentration in the membranes of intact erythrocytes was measured and compared with the prediction of the MC model. The analysis yields an excimer formation rate for nearest neighbor molecules of approximately 1 X 10(7) s-1 and an exchange frequency of approximately greater than 2 X 10(7) s-1, corresponding to a local diffusion coefficient of greater than 3 X 10(-8) cm2 s-1. This value is several times larger than the long-range diffusion coefficient for a similar system measured in fluorescence photobleaching recovery experiments. The difference is explained by the fact that long-range diffusion is obstructed by dispersed membrane proteins and is therefore greatly reduced when compared to free diffusion. The dependence of the diffusion coefficient on the fractional area covered by obstacles and on their size is derived from MC simulations and is compared to those of other theories lateral diffusibility.  相似文献   

8.
The problem of lateral diffusion in inhomogeneous membranes is illustrated by a theoretical calculation of the lateral diffusion of a fluorescent lipid probe in binary mixtures of phosphatidylcholine and cholesterol under conditions of temperature and composition such that this lipid mixture consists of alternating parallel domains of fluid and solid lipid, having separations that are small compared with the distance scale employed in photobleaching experiments. The theoretical calculations clearly illustrate how inhomogeneities in membrane composition affecting the lateral motion of membrane components on a small (10-100 nm) distance scale can give complex diffusive responses in experiments such as fluorescence photobleaching that employ comparatively macroscopic distances (10-100 micrometers) for the measurement of diffusive recovery. The theoretical calculations exhibit the unusual dependence of the apparent lateral diffusion coefficient of a fluorescent lipid probe on lipid composition in binary mixtures of cholesterol and phosphatidylcholines as reported by Rubenstein et al. (1979, Proc. Natl. Acad. Sci. U.S.A., 76:15-18).  相似文献   

9.
There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.  相似文献   

10.
The lateral diffusion of an 80,000-dalton major cell surface glycoprotein of murine fibroblasts has been measured. This antigen, identified through the use of monoclonal antibodies, is an integral glycoprotein distributed through the plasma membrane as judged by immunofluorescence and immunoelectron microscopy (see preceding paper). Measurements of fluorescence recovery after photobleaching were performed on the antigen-antibody complex within the plasma membrane of C3H/10T1/2 and NIH/3T3 cells after labeling the monoclonal antibody with fluorescein. Measurements were performed as a function of temperature, for interphase, mitotic, and G0 C3H/10T1/2 cells. The mean lateral diffusion coefficients (D) for the antibody-protein complex in interphase cells were in the range of 0.7-3.5 X 10(-10) cm2/s between 9 degrees and 37 degrees C, while that for the lipid analog probe, dihexadecylindocarbocyanine was about two orders of magnitude greater. This comparison indicates that peripheral interactions other than bilayer fluidity limit the lateral mobility of the antigen. The mobile fraction of mitotic, G0, and interphase cells showed a monotonic increase with temperature with most of the antibody-antigen complexes being free to move about 25 degrees C. Semi-quantitative interpretations of both the slow glycoprotein diffusion and the immobile fraction are offered. Comparison of diffusion coefficients for cells in different phases of the cell cycle does not reveal striking differences. Mobile fractions for G0 cells at 25 degrees C or less are substantially lower than in interphase cells. In all cases, there was a remarkably broad range of the fluorescence recovery data between different cells, resulting in up to a 10-fold variation in diffusion coefficients, which is far greater than the precision limits of the experiment. Diffusion values and mobile fractions were generally well within a factor of two when measured at several arbitrary points on a single cell. The origins of this cellular heterogenity remain to be elucidated. Lateral mobility in cell fragments and specific regions of single cells was also examined. The glycoprotein was mobile in ventral surface cell fragments. Its mobility was not altered in regions of cell- cell underlapping. However, the diffusion coefficient was threefold higher near the leading edge of motile cells compared to the trailing region. This difference may reflect weaker coupling of the glycoprotein to the underlying cytoskeleton in the dynamic leading edge region.  相似文献   

11.
Micrometer-scale domains in fibroblast plasma membranes   总被引:17,自引:7,他引:10       下载免费PDF全文
We have used the technique of fluorescence photobleaching recovery to measure the lateral diffusion coefficients and the mobile fractions of a fluorescent lipid probe, 1-acyl-2-(12-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)aminododecanoyl]) phosphatidylcholine (NBD-PC), and of labeled membrane proteins of human fibroblasts. Values for mobile fractions decrease monotonically with increasing size of the laser spot used for the measurements, over a range of 0.35-5.0 microns. Values for NBD-PC diffusion coefficients increase in part of this range to reach a plateau at larger laser spots. This variation is not an artifact of the measuring system, since the effects are not seen if diffusion of the probe is measured in liposomes. We also find that the distribution of diffusion coefficients measured with small laser spots is heterogeneous indicating that these small spots can sample different regions of the membrane. These regions appear to differ in protein concentration. Our data strongly indicate that fibroblast surface membranes consist of protein-rich domains approximately 1 micron in diameter, embedded in a relatively protein-poor lipid continuum. These features appear in photographs of labeled cell surfaces illuminated by the expanded laser beam.  相似文献   

12.
PH-20 protein on the plasma membrane (PH-20PM) is restricted to the posterior head of acrosome-intact guinea pig sperm. During the exocytotic acrosome reaction the inner acrosomal membrane (IAM) becomes continuous with the posterior head plasma membrane, and PH-20PM migrates to the IAM. There it joins a second population of PH-20 protein localized to this region of the acrosomal membrane (PH-20AM) (Cowan, A.E., P. Primakoff, and D.G. Myles, 1986, J. Cell Biol. 103:1289-1297). To investigate how the localized distributions of PH-20 protein are maintained, the lateral mobility of PH-20 protein on these different membrane domains was determined using fluorescence redistribution after photobleaching. PH-20PM on the posterior head of acrosome-intact sperm was found to be mobile, with a diffusion coefficient and percent recovery typical of integral membrane proteins (D = 1.8 X 10(-10) cm2/s; %R = 73). This value of D was some 50-fold lower than that found for the lipid probe 1,1-ditetradecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (C14diI) in the same region (D = 8.9 X 10(-9) cm2/s). After migration to the IAM of acrosome-reacted sperm, this same population of molecules (PH-20PM) exhibited a 30-fold increase in diffusion rate (D = 4.9 X 10(-9) cm2/s; %R = 78). This rate was similar to diffusion of the lipid probe C14diI in the IAM (D = 5.4 X 10(-9) cm2/s). The finding of free diffusion of PH-20PM in the IAM of acrosome-reacted sperm supports the proposal that PH-20 is maintained within the IAM by a barrier to diffusion at the domain boundary. The slower diffusion of PH-20PM on the posterior head of acrosome-intact sperm is also consistent with localization by barriers to diffusion, but does not rule out alternative mechanisms.  相似文献   

13.
Voltage-dependent sodium channels are distributed nonuniformly over the surface of nerve cells and are localized to morphologically distinct regions. Fluorescent neurotoxin probes specific for the voltage-dependent sodium channel stain the axon hillock 5-10 times more intensely than the cell body and show punctate fluorescence confined to the axon hillock which can be compared with the more diffuse and uniform labeling in the cell body. Using fluorescence photobleaching recovery (FPR) we measured the lateral mobility of voltage-dependent sodium channels over specific regions of the neuron. Nearly all sodium channels labeled with specific neurotoxins are free to diffuse within the cell body with lateral diffusion coefficients on the order of 10(-9) cm2/s. In contrast, lateral diffusion of sodium channels in the axon hillock is restricted, apparently in two different ways. Not only do sodium channels in these regions diffuse more slowly (10(-10)-10(-11) cm2/s), but also they are prevented from diffusing between axon hillock and cell body. No regionalization or differential mobilities were observed, however, for either tetramethylrhodamine-phosphatidylethanolamine, a probe of lipid diffusion, or FITC-succinyl concanavalin A, a probe for glycoproteins. During the maturation of the neuron, the plasma membrane differentiates and segregates voltage-dependent sodium channels into local compartments and maintains this localization perhaps either by direct cytoskeletal attachments or by a selective barrier to channel diffusion.  相似文献   

14.
The effects of insulin (10(-10)-10(-8) mol/l) on lateral diffusion of three fluorescent lipid probes, 1-acyl-2-(N-4-nitrobenzo-2-oxa-1,3-diazole)aminocaproyl phosphatidylcholine (NBD-PC), 5-(N-hexadecanoyl)aminofluorescein (F-C16), 5-(N-dodecanoyl)aminofluorescein (F-C12), and of fluorescein isothiocyanate-labeled proteins in the plasma membrane of intact rat hepatocytes were studied by the technique of fluorescence recovery after photobleaching. The absolute lateral diffusion coefficients of the lipid analogues NBD-PC, F-C16 and F-C12 at 21 degrees C were 2.5 X 10(-9) cm2/s, 5.4 X 10(-9) cm2/s and 19 X 10(-9) cm2/s, respectively. The diffusion coefficient mean of proteins labeled with fluorescein isothiocyanate was 6.4 X 10(-10) cm2/s. Insulin at 10(-9) and 10(-8) mol/l reduced the lateral diffusion coefficient for F-C12- and F-C16-labeled cells by 20% and for NBD-PC-labeled cells by 30% (P less than 0.025). The insulin effect was specific as tested by cell incubation with proinsulin and desoctapeptide insulin (10(-8) mol/l) and was detectable after 7 min of insulin preincubation. In contrast to lateral diffusion of lipid probes, lateral mobility of unselected membrane proteins was not altered by insulin. The observed modulation of lipid dynamics in the plasma membrane of intact hepatocytes, by which a variety of membrane functions can be influenced, may be an important step in the mechanism of insulin action.  相似文献   

15.
The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.  相似文献   

16.
Fluorescently labeled microtubule-associated proteins or poly-L-lysine (13,000 MW) were prepared by reaction with fluorescein isothiocyanate. The labeled compounds were used as probes of the assembly of calf brain tubulin using fluorescence photobleaching recovery techniques which allow measurement of the diffusion coefficient and percentage mobility of the fluorescent probe. When unfractionated tubulin (defined as material containing tubulin and microtubule-associated proteins) was polymerized at room temperature or 37 degrees C, either probe could be incorporated into microtubules, since the observed diffusion coefficient (approximately 1.7 X 10(-8) cm2/s) was much slower than that for either probe free in solution. The microtubules formed in the presence of labeled microtubule-associated proteins were free to diffuse while those formed in the presence of labeled polylysine were partially immobilized. Thus the fluorescence photobleaching recovery technique can be used to measure crosslinking of microtubules as well as assembly or interactions with other structures. When unfractionated tubulin was incubated with labeled polylysine in the presence of Ca2+ at room temperature, the observed diffusion coefficient (approximately 5.1 X 10(-8) cm2/s) probably represents the formation of rings of tubulin. The effect of mild and vigorous shearing, of cholchicine, and of different Mg2+ concentrations on the properties of the system were examined.  相似文献   

17.
High spatial resolution confocal microscopy of young MDCK cells stained with the lipophilic probe 1,1'-dihexadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate (DiIC(16)) revealed a reticulated fluorescence pattern on the apical membrane. DiIC(16) was delivered as crystals to live cells to minimize possible solvent perturbations of the membrane lipids. The ratio of the integrated fluorescence intensities in the bright versus dim regions was 1.6 +/- 0.1 (n = 13). Deconvolved images of the cells were consistent with exclusive plasma membrane staining. Multi-spectral and fluorescence anisotropy microscopy did not reveal differences between bright and dim regions. Bright regions coincided with microvilli and microridges observed by differential interference contrast microscopy and were stable for several minutes. Fluorescence recovery after photobleaching yielded similar diffusion coefficients (pooled D = 1.5 +/- 0.6 x 10(-9) cm(2)/s, n = 40) for both bright and dim regions. Line fluorescence recovery after photobleaching showed that the reticulated pattern was maintained as the fluorescence recovered in the bleached areas. Cytochalasin D did not affect the staining pattern, but the pattern was eliminated by cholesterol depletion with methyl-beta-cyclodextrin. We conclude that the reticulated fluorescence pattern was caused by increased optical path lengths through the microvilli and microridges compared with the flat areas on the apical membrane.  相似文献   

18.
Lipid diffusibility in the intact erythrocyte membrane   总被引:12,自引:8,他引:4       下载免费PDF全文
The lateral diffusion of fluorescent lipid analogues in the plasma membrane of intact erythrocytes from man, mouse, rabbit, and frog has been measured by fluorescence photobleaching recovery (FPR). Intact cells from dystrophic, normoblastic, hemolytic, and spherocytotic mouse mutants; from hypercholesterolemic rabbits and humans; and from prenatal, neonatal, and juvenile mice have been compared with corresponding normals. The lateral diffusion coefficient (D) for 3,3'-dioctadecylindodicarbocyanine iodide (DiI[5]) in intact normal human erythrocytes is D = 8.2 +/- 1.2 X 10(-9) cm2/s at 25 degrees C and D = 2.1 +/- 0.4 X 10(-8) cm2/s at 37 degrees C, and varies approximately 50-fold between 1 degree and 42 degrees C. The diffusion constants of lipid analogue rhodamine-B phosphatidylethanolamine (RBPE) are about twice those of DiI[5]. The temperature dependence and magnitude of D vary by up to a factor of 3 between species and are only influenced by donor age in prenatals. DiI[5] diffusibility is not perturbed by the presence of calcium or local anesthetics or by spectrin depletion (via mutation). However, lipid-analogue diffusibility in erythrocyte ghosts may differ from intact cells. Dietary hypercholesterolemia in rabbits reduces the diffusion coefficient and eliminates the characteristic break in Arrhenius plots of D found in all other cells studied except frog.  相似文献   

19.
Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1'-ditetradecyl 3,3,3',3'-tetramethylindocarbocyanine iodide (C14diI) as a fluorescent lipid probe. During this period of development the lateral diffusion coefficient of membrane lipids is consistently greater in the vegetal polar lobe area as compared to the animal plasma membrane area (on average 30%), demonstrating the existence of an animal-vegetal polarity in plasma membrane properties. At third cleavage, the differences between animal and vegetal plasma membrane region become even more pronounced; in the four animal micromeres the diffusion coefficient (D) and mobile fraction (MF) are 2.9 +/- 0.2 X 10(-9) cm2/sec and 51 +/- 2%, respectively, while in the four vegetal macromeres D = 5.0 +/- 0.3 X 10(-9) cm2/sec and MF = 78 +/- 2%. Superimposed upon the observed animal-vegetal polarity, the lateral diffusion in the polar lobe membrane area shows a cell-cycle-dependent modulation. The highest mean values for D are reached during the S phase (ranging from 7.0 to 7.8 X 10(-9) cm2/sec in the three cycles measured), while at the end of G2 phase and during early mitosis mean values for D have decreased significantly (ranging from 5.0 to 5.9 X 10(-9) cm2/sec). Diffusion rates in the animal membranes of the embryo are constant during the three successive cell cycles (D = 4.3-5.0 X 10(-9) cm2/sec), except for a peak at the S phase of the first cell cycle (D = 6.0 X 10(-9) cm2/sec). These results are discussed in relation with previously observed ultrastructural heterogeneities in the Nassarius egg plasma membrane. It is speculated that the observed animal-vegetal polarity in the organization of the egg membrane might play an important role in the process of cell diversification during early development.  相似文献   

20.
We have measured the lateral diffusion coefficient (D), of active dansyl-labeled gramicidin C (DGC), using the technique of fluorescence photobleaching recovery, under conditions in which the cylindrical dimer channel of DGC predominates. In pure, hydrated, dimyristoylphosphatidylcholine (DMPC) multibilayers (MBL), D decreases from 6 X 10(-8) cm2/s at 40 degrees C to 3 X 10(-8) cm2/s at 25 degrees C, and drops 100-fold at 23 degrees C, the phase transition temperature (Tm) of DMPC. Above Tm, addition of cholesterol decreases D; a threefold stepwise drop occurs between 10 and 20 mol %. Below Tm, increasing cholesterol increases D; a 10-fold increase occurs between 10 and 20 mol % at 21 degrees C, between 20 and 25 mol % at 15 degrees C, and between 25 and 30 mol % at 5 degrees C. In egg phosphatidylcholine (EPC) MBL, D decreases linearly from 5 X 10(-8) cm2/s at 35 degrees C to 2 X 10(-8) cm2/s at 5 degrees C; addition of equimolar cholesterol reduces D by a factor of 2. Thus this transmembrane polypeptide at low membrane concentrations diffuses quite like a lipid molecule. Its diffusivity in lipid mixtures appears to reflect predicted changes of lateral composition. Increasing gramicidin C (GC) in DMPC/GC MBL broadened the phase transition, and the diffusion coefficient of the lipid probe N-4-nitrobenzo-2-diazole phosphatidylethanolamine (NBD-PE) at 30 degrees C decreases from 8 X 10(-8) cm2/s below 5 mol % GC to 2 X 10(-8) cm2/s at 14 mol % GC; D for DGC similarly decreases from 4 X 10(-8) cm2/s at 2 mol % GC to 1.4 X 10(-8) cm2/s at 14 mol % GC. Hence, above Tm, high concentrations of this polypeptide restrict the lateral mobility of membrane components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号