首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of C30 carotenoids is relatively restricted in nature but has been described in Staphylococcus and in methylotrophic bacteria. We report here identification of a novel gene (crtNb) involved in conversion of 4,4′-diapolycopene to 4,4′-diapolycopene aldehyde. An aldehyde dehydrogenase gene (ald) responsible for the subsequent oxidation of 4,4′-diapolycopene aldehyde to 4,4′-diapolycopene acid was also identified in Methylomonas. CrtNb has significant sequence homology with diapophytoene desaturases (CrtN). However, data from knockout of crtNb and expression of crtNb in Escherichia coli indicated that CrtNb is not a desaturase but rather a novel carotenoid oxidase catalyzing oxidation of the terminal methyl group(s) of 4,4′-diaponeurosporene and 4,4′-diapolycopene to the corresponding terminal aldehyde. It has moderate to low activity on neurosporene and lycopene and no activity on β-carotene or ζ-carotene. Using a combination of C30 carotenoid synthesis genes from Staphylococcus and Methylomonas, 4,4′-diapolycopene dialdehyde was produced in E. coli as the predominant carotenoid. This C30 dialdehyde is a dark-reddish purple pigment that may have potential uses in foods and cosmetics.  相似文献   

2.
The biosynthetic pathway for staphyloxanthin, a C(30) carotenoid biosynthesized by Staphylococcus aureus, has previously been proposed to consist of five enzymes (CrtO, CrtP, CrtQ, CrtM, and CrtN). Here, we report a missing sixth enzyme, 4,4'-diaponeurosporen-aldehyde dehydrogenase (AldH), in the staphyloxanthin biosynthetic pathway and describe the functional expression of the complete staphyloxanthin biosynthetic pathway in Escherichia coli. When we expressed the five known pathway enzymes through artificial synthetic operons and the wild-type operon (crtOPQMN) in E. coli, carotenoid aldehyde intermediates such as 4,4'-diaponeurosporen-4-al accumulated without being converted into staphyloxanthin or other intermediates. We identified an aldH gene located 670 kilobase pairs from the known staphyloxanthin gene cluster in the S. aureus genome and an aldH gene in the non-staphyloxanthin-producing Staphylococcus carnosus genome. These two putative enzymes catalyzed the missing oxidation reaction to convert 4,4'-diaponeurosporen-4-al into 4,4'-diaponeurosporenoic acid in E. coli. Deletion of the aldH gene in S. aureus abolished staphyloxanthin biosynthesis and caused accumulation of 4,4'-diaponeurosporen-4-al, confirming the role of AldH in staphyloxanthin biosynthesis. When the complete staphyloxanthin biosynthetic pathway was expressed using an artificial synthetic operon in E. coli, staphyloxanthin-like compounds, which contained altered fatty acid acyl chains, and novel carotenoid compounds were produced, indicating functional expression and coordination of the six staphyloxanthin pathway enzymes.  相似文献   

3.
In a red bacterial strain SF238 belonging to Sporosarcina aquimarina, a C(30) carotenoid biosynthetic pathway was identified. It has been reconstructed by analysis of intermediates that accumulate in two different pigment mutants. It starts with the synthesis of 4,4'-diapophytoene and proceeds with its desaturation to 4,4'-diapolycopene, which is then oxidized to 4,4'-diapolycopene-4,4'-dioate. Using a combination of HPLC-PDA and LC-MS/MS analyses, the final product of this pathway was identified as acetyl-4,4'-diapolycopene-4,4'-dioate. This is a novel carotenoid not reported in any organisms to date. It could be demonstrated that this carotenoid has excellent antioxidative properties to protect from photosensitized peroxidation reactions like other related 4,4'-diapolycopene-4,4'-dioate derivatives.  相似文献   

4.
Upon coexpression with Erwinia geranylgeranyldiphosphate (GGDP) synthase in Escherichia coli, C(30) carotenoid synthase CrtM from Staphylococcus aureus produces novel carotenoids with the asymmetrical C(35) backbone. The products of condensation of farnesyldiphosphate and GDP, C(35) structures comprise 40 to 60% of total carotenoid accumulated. Carotene desaturases and carotene cyclases from C(40) or C(30) pathways accepted and converted the C(35) substrate, thus creating a C(35) carotenoid biosynthetic pathway in E. coli. Directed evolution to modulate desaturase step number, together with combinatorial expression of the desaturase variants with lycopene cyclases, allowed us to produce at least 10 compounds not previously described. This result highlights the plastic and expansible nature of carotenoid pathways and illustrates how combinatorial biosynthesis coupled with directed evolution can rapidly access diverse chemical structures.  相似文献   

5.
The accumulation of the apocarotenoid neurosporaxanthin and its carotene precursors explains the orange pigmentation of the Neurospora surface cultures. Neurosporaxanthin biosynthesis requires the activity of the albino gene products (AL-1, AL-2 and AL-3), which yield the precursor torulene. Recently, we identified the carotenoid oxygenase CAO-2, which cleaves torulene to produce the aldehyde β-apo-4'-carotenal. This revealed a last missing step in Neurospora carotenogenesis, namely the oxidation of the CAO-2 product to the corresponding acid neurosporaxanthin. The mutant ylo-1 , which exhibits a yellow colour, lacks neurosporaxanthin and accumulates several carotenes, but its biochemical basis is unknown. Based on available genetic data, we identified ylo-1 in the Neurospora genome, which encodes an enzyme representing a novel subfamily of aldehyde dehydrogenases, and demonstrated that it is responsible for the yellow phenotype, by sequencing and complementation of mutant alleles. In contrast to the precedent structural genes in the carotenoid pathway, light does not induce the synthesis of ylo-1 mRNA. In vitro incubation of purified YLO-1 protein with β-apo-4'-carotenal produced neurosporaxanthin through the oxidation of the terminal aldehyde into a carboxyl group. We conclude that YLO-1 completes the set of enzymes needed for the synthesis of this major Neurospora pigment.  相似文献   

6.
Most Staphylococcus aureus strains produce the orange carotenoid staphyloxanthin. The staphyloxanthin biosynthesis genes are organized in an operon, crtOPQMN, with a sigma(B)-dependent promoter upstream of crtO and a termination region downstream of crtN. The functions of the five encoded enzymes were predicted on the basis of their sequence similarity to known enzymes and by product analysis of gene deletion mutants. The first step in staphyloxanthin biosynthesis is the head-to-head condensation of two molecules of farnesyl diphosphate to form dehydrosqualene (4,4'-diapophytoene), catalyzed by the dehydrosqualene synthase CrtM. The dehydrosqualene desaturase CrtN dehydrogenates dehydrosqualene to form the yellow, main intermediate 4,4'-diaponeurosporene. CrtP, very likely a mixed function oxidase, oxidizes the terminal methyl group of 4,4'-diaponeurosporene to form 4,4'-diaponeurosporenic acid. CrtQ, a glycosyltransferase, esterifies glucose at the C(1)' position with the carboxyl group of 4,4'-diaponeurosporenic acid to yield glycosyl 4,4'-diaponeurosporenoate; this compound was the major product in the clone expressing crtPQMN. In the final step, the acyltransferase CrtO esterifies glucose at the C(6)' position with the carboxyl group of 12-methyltetradecanoic acid to yield staphyloxanthin. Staphyloxanthin overexpressed in Staphylococcus carnosus (pTX-crtOPQMN) and purified was analyzed by high pressure liquid chromatography-mass spectroscopy and NMR spectroscopy. Staphyloxanthin was identified as beta-D-glucopyranosyl 1-O-(4,4'-diaponeurosporen-4-oate)-6-O-(12-methyltetradecanoate).  相似文献   

7.
The pigments of Staphylococcus aureus were isolated and purified, and their chemical structures were determined. All of the 17 compounds identified were triterpenoid carotenoids possessing a C30 chain instead of the C40 carotenoid structure found in most other organisms. The main pigment, staphyloxanthin, was shown to be alpha-D-glucopyranosyl 1-O-(4,4'-diaponeurosporen-4-oate) 6-O-(12-methyltetradecanoate), in which glucose is esterified with both a triterpenoid carotenoid carboxylic acid and a C15 fatty acid. It is accompanied by isomers containing other hexoses and homologs containing C17 fatty acids. The carotenes 4,4'-diapophytoene, 4,4'-diapophytofluene, 4-4'-diapophytofluene, 4-4'-diapo-zeta-carotene, 4,4'-diapo-7,8,11,12-tetrahydrolycopene, and 4,4'-diaponeurosporene and the xanthophylls 4,4'-diaponeurosporenal, 4,4'-diaponeurosporenoic acid, and glucosyl diaponeurosporenoate were also identified, together with some of their isomers or breakdown products. The symmetrical 4,4'-diapo- structure was adopted for these triterpenoid carotenoids, but an alternative unsymmetrical 8'-apo-structure could not be excluded.  相似文献   

8.
The ispA gene encoding farnesyl pyrophosphate (FPP) synthase from Escherichia coli and the crtM gene encoding 4,4'-diapophytoene (DAP) synthase from Staphylococcus aureus were overexpressed and purified for use in vitro. Steady-state kinetics for FPP synthase and DAP synthase, individually and in sequence, were determined under optimized reaction conditions. For the two-step reaction, the DAP product was unstable in aqueous buffer; however, in situ extraction using an aqueous-organic two-phase system resulted in a 100% conversion of isopentenyl pyrophosphate and dimethylallyl pyrophosphate into DAP. This aqueous-organic two-phase system is the first demonstration of an in vitro carotenoid synthesis pathway performed with in situ extraction, which enables quantitative conversions. This approach, if extended to a wide range of isoprenoid-based pathways, could lead to the synthesis of novel carotenoids and their derivatives.  相似文献   

9.
10.
(1) Periodate oxidation of ATP yields a single product which has been purified and characterised. Periodate-oxidised ATP (o-ATP) behaves as a single compound during TLC analysis, but NMR spectral studies show that it exists in aqueous solution as an equilibrium mixture of three dialdehyde monohydrates and a dihydrate. Little free aldehyde is present. The dialdehyde monohydrates are in the form of diastereomeric cyclic hemiacetals. (2) The dialdehyde grouping of o-ATP can be reduced with sodium borohydride, producing a dialcohol. (3) o-ATP has been frequently used in attempts to affinity label nucleotide-binding sites on proteins. The proposed structure of o-ATP is discussed in relation to this use for o-ATP.  相似文献   

11.
Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in Sj?gren-Larsson syndrome, a neurological disorder resulting in physical and mental handicaps. Microsomal FALDH was expressed in E. coli and purified. Using an in vitro activity assay an optimum pH of approximately 9.5 and temperature of approximately 35 degrees C were determined. Medium- and long-chain fatty aldehydes were converted to the corresponding acids and kinetic parameters determined. The enzyme showed high activity with heptanal, tetradecanal, hexadecanal and octadecanal with lower activities for the other tested substrates. The enzyme was also able to convert some fatty alcohol substrates to their corresponding aldehydes and acids, at 25-30% the rate of aldehyde oxidation. A structural model of FALDH has been constructed, and catalytically important residues have been proposed to be involved in alcohol and aldehyde oxidation: Gln-120, Glu-207, Cys-241, Phe-333, Tyr-410 and His-411. These results place FALDH in a central role in the fatty alcohol/acid interconversion cycle, and provide a direct link between enzyme inactivation and disease pathology caused by accumulation of alcohols.  相似文献   

12.
The C30 carotene synthase CrtM from Staphylococcus aureus and the C40 carotene synthase CrtB from Erwinia uredovora were swapped into their respective foreign C40 and C30 biosynthetic pathways (heterologously expressed in Escherichia coli) and evaluated for function. Each displayed negligible ability to synthesize the natural carotenoid product of the other. After one round of mutagenesis and screening, we isolated 116 variants of CrtM able to synthesize C40 carotenoids. In contrast, we failed to find a single variant of CrtB with detectable C30 activity. Subsequent analysis revealed that the best CrtM mutants performed comparably to CrtB in an in vivo C40 pathway. These mutants showed significant variation in performance in their original C30 pathway, indicating the emergence of enzymes with broadened substrate specificity as well as those with shifted specificity. We discovered that Phe 26 alone determines the specificity of CrtM. The plasticity of CrtM with respect to its substrate and product range highlights the potential for creating further new carotenoid backbone structures.  相似文献   

13.
Characterization of a novel carotenoid cleavage dioxygenase from plants   总被引:27,自引:0,他引:27  
The plant hormone abscisic acid is derived from the oxidative cleavage of a carotenoid precursor. Enzymes that catalyze this carotenoid cleavage reaction, nine-cis epoxy-carotenoid dioxygenases, have been identified in several plant species. Similar proteins, whose functions are not yet known, are present in diverse organisms. A putative cleavage enzyme from Arabidopsis thaliana contains several highly conserved motifs found in other carotenoid cleavage enzymes. However, the overall homology with known abscisic acid biosynthetic enzymes is low. To determine the biochemical function of this protein, it was expressed in Escherichia coli and used for in vitro assays. The recombinant protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions. In most instances, the enzyme cleaves the substrate symmetrically to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrate. Based upon sequence similarity, orthologs of this gene are present throughout the plant kingdom. A similar protein in beans catalyzes the same reaction in vitro. The characterization of these activities offers the potential to synthesize a variety of interesting, natural products and is the first step in determining the function of this gene family in plants.  相似文献   

14.
1. The characterization of two novel triterpenoid xanthophylls occurring in Streptococcus faecium UNH 564P is described. 2. Both are derived formally, and probably biosynthetically, from the C(30) analogue of neurosporene and have been identified as 4-hydroxy-4,4'-diaponeurosporene and its glucoside, 4-d-glucopyranosyloxy-4,4'-diaponeurosporene. 3. Problems associated with the use of specific glucosidases in defining the anomerism of carotenoid glucosides are discussed.  相似文献   

15.
At least 700 natural carotenoids have been characterized; they can be classified into C(30), C(40) and C(50) subfamilies. The first step of C(40) pathway is the combination of two molecules of geranylgeranyl pyrophosphate to synthesize phytoene by phytoene synthase (CrtB or PSY). Most natural carotenoids originate from different types and levels of desaturation by phytoene desaturase (CrtI or PDS+ZDS), cyclization by lycopene cyclase (CrtY or LYC) and other modifications by different modifying enzyme (CrtA, CrtU, CrtZ or BCH, CrtX, CrtO, etc.) of this C(40) backbone. The first step of C(30) pathway is the combination of two molecules of FDP to synthesize diapophytoene by diapophytoene synthase (CrtM). But natural C(30) pathway only goes through a few steps of desaturation to form diaponeurosporene by diapophytoene desaturase (CrtN). Natural C(50) carotenoid decaprenoxanthin is synthesized starting from the C(40) carotenoid lycopene by the addition of 2 C(5) units. Concerned the importance of carotenoids, more and more attention has been concentrated on achieving novel carotenoids. The method being used successfully is to construct carotenoids biosynthesis pathways by metabolic engineering. The strategy of metabolic engineering is to engineer a small number of stringent upstream enzymes (CrtB, CrtI, CrtY, CrtM, or CrtN), then use a lot of promiscuous downstream enzymes to obtain large number of novel carotenoids. Two key enzymes phytoene desaturase (CrtI(m)) and lycopene cyclase (CrtY(m)) have been modified and used with a series of downstream modifying enzymes with broad substrate specificity, such as monooxygenase (CrtA), carotene desaturase (CrtU), carotene hydroxylase (CrtZ), zeaxanthin glycosylase (CrtX) and carotene ketolase (CrtO) to extend successfully natural C(30) and C(40) pathways in E. coli. Existing C(30) synthase CrtM to synthesize carotenoids with different chain length have been engineered and a series of novel carotenoids have been achieved using downstream modifying enzymes. C(35) carotenoid biosynthesis pathway has been constructed in E. coli as described. C(45) and C(50) carotenoid biosynthesis pathways have also been constructed in E. coli, but it is still necessary to extend these two pathways. Those novel acyclic or cyclic carotenoids have a potential ability to protect against photooxidation and radical-mediated peroxidation reactions which makes them interesting pharmaceutical candidates.  相似文献   

16.
Enzymatic steps from two different biosynthetic pathways were combined in Escherichia coli, directing the synthesis of a new class of biomolecules--ubiquinones with prenyl side chains containing conjugated double bonds. This was achieved by the activity of a C(30) carotenoid desaturase, CrtN, from Staphylococcus aureus, which exhibited an inherent flexibility in substrate recognition compared to other carotenoid desaturases. By utilizing the known plasticity of E. coli's native ubiquinone biosynthesis pathway and the unusual activity of CrtN, modified ubiquinone structures with prenyl side chains containing conjugated double bonds were generated. The side chains of the new structures were confirmed to have different degrees of desaturation by mass spectrometry and nuclear magnetic resonance analysis. In vivo (14)C labeling and in vitro activity studies showed that CrtN desaturates octaprenyl diphosphates but not the ubiquinone compounds directly. Antioxidant properties of conjugated side chain ubiquinones were analyzed in an in vitro beta-carotene-linoleate model system and were found to be higher than the corresponding unmodified ubiquinones. These results demonstrate that by combining pathway steps from different branches of biosynthetic networks, classes of compounds not observed in nature can be synthesized and structural motifs that are functionally important can be combined or enhanced.  相似文献   

17.
Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.  相似文献   

18.
Staphylococcus aureus synthesizes C(30) carotenoids. Their formation involves the introduction of three double bonds, which is catalyzed by a single enzyme. This enzyme, 4,4'-diapophytoene desaturase from S. aureus, was overexpressed in Escherichia coli and purified in one step by affinity chromatography, and then the protein was characterized with respect to substrate specificity, cofactor requirement, and oligomerization.  相似文献   

19.
Glycosyl hydrolases hydrolyze the glycosidic bond either in carbohydrates or between carbohydrate and non-carbohydrate moiety. The beta-glucuronidase (beta D-glucuronoside glucuronosohydrolase; EC 3.2.1.31) enzyme belongs to the family-2 glycosyl hydrolase. The E. coli borne beta-glucuronidase gene (uidA) was devised as a gene fusion marker in plant genetic transformation experiments. Recent plant transformation vectors contain a novel beta-glucuronidase (gusA) derived from Staphylococcus sp. RLH1 for E. coli uidA. It is known to have a ten fold higher sensitivity compared to E. coli beta-glucuronidase. The functional superiority of Staphylococcus (gusA) over E. coli (uidA) activity is not fully known. The comparison of secondary structural elements among them revealed an increased percentage of random coils in Staphylococcus beta-glucuronidase. The 3D model of gusA shows catalytic site residues 396Glu, 508Glu and 471Tyr of gusA in loop regions. Accessible surface area (ASA) calculations on the 3D model showed increased ASA for active site residues in Staphylococcus beta-glucuronidase. Increased random coil, the presence of catalytic residues in loops, greater solvent accessibility of active residues and increased charged residues in gusA of Staphylococcus might facilitate interaction with the solvent. This hypothesizes the enhanced catalytic activity of beta-glucuronidase in Staphylococcus sp. RLH1 compared to that in E. coli.  相似文献   

20.
Using methods of laboratory evolution to force the C(30) carotenoid synthase CrtM to function as a C(40) synthase, followed by further mutagenesis at functionally important amino acid residues, we have discovered that synthase specificity is controlled at the second (rearrangement) step of the two-step reaction. We used this information to engineer CrtM variants that can synthesize previously unknown C(45) and C(50) carotenoid backbones (mono- and diisopentenylphytoenes) from the appropriate isoprenyldiphosphate precursors. With this ability to produce new backbones in Escherichia coli comes the potential to generate whole series of novel carotenoids by using carotenoid-modifying enzymes, including desaturases, cyclases, hydroxylases, and dioxygenases, from naturally occurring pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号