首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

3.
The structural features of Escherichia coli ribosomal protein S8 that are involved in translational regulation of spc operon expression and, therefore, in its interaction with RNA have been investigated by use of a genetic approach. The rpsH gene, which encodes protein S8, was first inserted into an expression vector under the control of the lac promoter and subsequently mutagenized with methoxylamine or nitrous acid. A screening procedure based on the regulatory role of S8 was used to identify mutants that were potentially defective in their ability to associate with spc operon mRNA and, by inference, 16S mRNA. In this way, we isolated 39 variants of the S8 gene containing alterations at 34 different sites, including 37 that led to single amino acid substitutions and 2 that generated premature termination codons. As the mutations were distributed throughout the polypeptide chain, our results indicate that amino acid residues important for the structural integrity of the RNA-binding domain are not localized to a single segment. Nonetheless, the majority were located within three short sequences at the N terminus, middle, and C terminus that are phylogenetically conserved among all known eubacterial and chloroplast versions of this protein. We conclude that these sites encompass the main structural determinants required for the interaction of protein S8 with RNA.  相似文献   

4.
5.
The L11 operon in Escherichia coli consists of the genes coding for ribosomal proteins L11 and L1. It is known that translation of L1 does not take place unless the preceding L11 cistron is translated, that is, the two cistrons are translationally coupled, and this is the basis of coregulation of the translation of the two cistrons by a single repressor, L1. Several mutational analyses were carried out to define the region responsible for coupling L1 translation with L11 translation. First, by introducing several amber mutations into the L11 gene by a site-directed mutagenesis technique, it was shown that translation by ribosomes down to a position 21 nucleotides upstream, but not to a position 45 nucleotides upstream, from the end of the L11 cistron allowed the initiation of L11 translation. Second, deletion analysis indicated that a region located 23 to 20 nucleotides from the end of the L11 gene was involved in preventing independent initiation from L1 translation. Third, five different mutations obtained by screening for activation of the masked L1 initiation site were found to be clustered in a small region immediately upstream from the Shine-Dalgarno sequence of L1, and all of them were G-to-A transitions. These results, together with some additional experiments with oligonucleotide-directed mutagenesis, defined the region involved in the coupling and suggest that some special feature of this region, probably different from simple masking of the initiation site by base pairing, is responsible for translational coupling. The present results also suggest that there might be specific differences in the primary nucleotide sequence that distinguish independent translational initiation sites from translationally coupled (i.e., masked) initiation sites.  相似文献   

6.
7.
8.
9.
The rplJ-rpoBC (L10) operon of Escherichia coli is regulated in part through translational repression (feedback regulation) by ribosomal protein L10 or a complex of ribosomal proteins L10 and L7/L12 (L10-L7/L12). We have constructed mutants in the untranslated leader region of a rplJ-lacZ fusion by oligonucleotide-directed mutagenesis. The mutations include several deletions and a number of single base changes, all of which fail to exhibit normal feedback regulation. Chemical probing of part of the rplJ mRNA leader in the mutagenized region confirms that all of the mutations lie in a stem structure located 140 nucleotides upstream from the translation start-site. The structure includes a 12 base-pair stem, a four base stem-loop, and a six base bulge-loop. Point mutations that abolish feedback regulation are presumed to disrupt this stem structure. Pseudorevertants of selected point mutations were constructed by combining pairs of single base mutations. In these cases, both the secondary structure of the RNA and feedback regulation were restored. The results allow us to define a region of secondary structure in the rplJ mRNA leader that is necessary for feedback regulation.  相似文献   

10.
11.
Summary It was previously observed that the stability of ribosomal protein (r-protein) mRNA in Escherichia coli decreases under the conditions where its translation is feedback inhibited by repressor r-protein. We have now demonstrated that the stability of mRNA for r-proteins S13, S11 and S4 increases in a strain carrying a mutation in the gene for S4, a translational repressor regulating these r-proteins. The results confirm the previous observations that translational repression increases the decay rate of r-protein mRNA, and in addition, show that the half-life of S13-S4 r-protein mRNA in cells growing under ordinary conditions is significantly shorter than its inherent stability would predict, due to the operation of translational feedback regulation.  相似文献   

12.
13.
The trpB and trpA coding regions of the polycistronic trp mRNA of Escherichia coli are separated by overlapping translation stop and start codons. Efficient translation of the trpA coding region is subject to translational coupling, i.e., maximal trpA expression is dependent on prior translation of the trpB coding region. Previous studies demonstrated that the trpA Shine-Dalgarno sequence (within trpB) and/or the location of the trpB stop codon influenced trpA expression. To examine the effect of stop codon location specifically, we constructed plasmids in which different nucleotide sequences preceding the trpA start codon were retained, and only the reading frame was changed. When trpB translation proceeded in the wild type reading frame and terminated at the normal trpB stop codon, trpA polypeptide levels were elevated over the levels observed when translation stopped before or after the natural trpB stop codon. The proximity of the trpB stop codon to the trpA start codon therefore markedly influences trpA expression.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号