首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When extracted and analyzed under conditions which maintain noncovalently associated RNA-RNA complexes, the bulk cellular RNA of Crithidia fasciculata contains species of apparent molecular weights 1.3, 0.825, 0.08, 0.065, and 0.045 x 10(6) in addition to 5S rRNA and tRNA. Heat denaturation results in the disappearance of the 1.3 x 10(6) dalton RNA and the appearance of three new species having molecular weights of 0.67, 0.575, and 0.059 x 10(6). In addition, the apparent molecular weight of the 0.825 x 10(6) dalton component is reproducibly lowered to 0.81 x 10(6) after heat treatment. With the exception of tRNA, all of the RNA species are present in close to equimolar amounts in either undenatured or heat-denatured C. fasciculata bulk cellular RNA. On the basis of previous observations on the ribosomal RNA of the closely related organism, Crithidia oncopelti (Spencer, R. & Cross, G.A.M. (1976) J. Gen. Microbiol. 93, 82-88), the 1.3 and 0.825 x 10(6) dalton RNA's are considered to be components of the large and small subunits, respectively, of C. fasciculata ribosomes, but the subunit localization of the other RNA's described here has not yet been determined. O2'-Methylnucleosides account for about 1.4 mol% of the total nucleoside constituents of unfractionated C. fasciculata rRNA. Quantitative analysis suggests that the rRNA molecules in a C. fasciculata ribosome contain a total of 95-100 O2'-methyl groups, distributed in 80-85 Nm-Np sequences (including four 'hypermodified' Nm-Np, each containing a modification of a base or base-sugar linkage in addition to sugar methylation), six different Nm-Nm-Np sequences, and one Nm-Nm-Nm-Np sequence. While the specific pattern of O2'-methylation in the rRNA of C. fasciculata is distinct, both qualitatively and quantitatively, from the pattern observed in other organisms, Crithidia rRNA does contain certain 'universal' O2'-methylated sequences which appear to have been extensively conserved in evolution. The base-methylated nucleoside, N6,N6-dimethyladenosine (m26A), has been isolated from both C. fasciculata and wheat embryo rRNA in the form of the alkali-resistant dinucleotide, m26A-m26Ap. This dinucleotide and its enzymatic degradation products have been characterized by examination of their ultraviolet absorption spectra and electrophoretic and chromatographic properties.  相似文献   

2.
To obtain additional information on the phylogenetic relationships within the family Trypanosomatidae (order Kinetoplastida), we have sequenced the small subunit ribosomal RNA genes from the endosymbiont containing species Herpetomonas roitmani TCC080, Herpetomonas sp. TCC263, Crithidia oncopelti ATCC 12982 and a partial large subunit rRNA gene from H. roitmani. The small subunit sequences in the two isolates of Herpetomonas are very similar but not identical, and so are their restriction digest profiles of kinetoplast DNA. The size of minicircles in both isolates is 4.2 kilobases. The inferred ribosomal RNA phylogenetic trees shows the genera Herpetomonas and Crithidia as polyphyletic. Endosymbiont-bearing herpetomonads cluster with the endosymbiont-bearing crithidias and a blastocrithidia to form a monophyletic clade, whereas the endosymbiont-free members of these genera are found elsewhere in the tree. These data support the hypothesis of a monophyletic origin of endosymbiosis in trypanosomatid evolution and also suggest that a taxonomic revision is needed in order to better describe the natural affinities in this family.  相似文献   

3.
Yeast ribosomal RNA was hydrolyzed to its constituent nucleosides with the aid of snake venom and bacterial alkaline phosphatase. Lyophilized hydrolysate was labeled with radioactive 5-hydroxyuridine and applied to partition chromatography. It was found that some components of rRNA are held on the column and can be eluted with water. Eighty-nine percent of the label, a large portion of cytidine, and several unidentified compounds were found in the water wash. The direct application of the wash concentrate to ascending paper chromatography in saturated butanol-H2O resulted in the separation of three distinct UV-absorbing bands. Further resolution and characterization of one band of unidentified material revealed the presence of an additional nucleoside. On the basis of chromatographic and electrophoretic behavior and UV-absorption spectra, it was tentatively identified as 5-hydroxymethyluridine.  相似文献   

4.
A procedure for the quantitative measurement of the O2'-methylnucleoside constitutents of RNA has recently been developed in this laboratory (Gray, M.W. Can. J. Biochem. 53, 735-746 (1975)). This assay method is based on the resistance of O2'-methylnucleoside 5'-phosphates (pNm) (generated by phosphodiesterase hydrolysis of RNA) to subsequent dephosphorylation by venom 5'-nucleotidase (EC 3.1.3.5). In the present investigation, two base-modified 5'-nucleotides, each displaying an unusual resistance to 5'-nucleotidase, have been identified. These compounds have been characterized by a variety of techniques as N2, N2-dimethylguanosine 5'-phosphate (pm2/2G) and 3-(3-amino-3-carboxypropyl)uridine 5'-phosphate (p4abu3U). Because of their resistance to 5'-nucleotidase, pm2/2G and p4abu3U are isolated along with the pNm in the mononucleotide fraction of venom hydrolysates of transfer RNA. Under hydrolysis conditions, the stability of p4abu3U is comparable to that of a pNm, allowing quantitative assay of the nucleotide. The proportion (mean +/- SD) of p4abu3U in venom hydrolysates of wheat embryo and Escherichia coli tRNA has been determined to be 0.35 +/- 0.03 (n=5) and 0.14 +/- 0.02 (n=4) mol%, respectively. The absence of p4abu3U in venom hydrolysates of yeast tRNA implies the absence of the corresponding nucleoside in yeast tRNA, in agreement with existing data. The variable recovery of pm2/2G from venom hydrolysates of wheat embryo and yeast tRNA indicates that under hydrolysis conditions, this base-modified nucleotide is only partially resistent to 5'-nucleotidase. The complete absence of pm2/2G in venom hydrolysates of E. coli tRNA is consistent with the known absence of N2, N2-dimethylguanosine in this RNA. These observations demonstrate that resistance to 5'-nucleotidase is a necessary but not sufficient criterion for concluding that a 5'-nucleotide is O2'-methylated. When applied to wheat embryo ribosomal RNA, the analytical methods described in this report failed to reveal any compound having the distinctive charge properties of p4abu3U. It therefore appears that 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine, recently characterized as a constituent of the 18 S rRNA of Chinese hamster cells (Saponara, A.G. & Enger, M.D. Biochim. Biophys. Acta 349, 61-77 (1974)), may not be present in wheat embryo ribosomal RNA.  相似文献   

5.
Secondary methylation of yeast ribosomal precursor RNA.   总被引:9,自引:0,他引:9  
The timing of methylation of the ribosomal sequences of ribosomal precursor RNA (pre-rRNA) from the yeast Saccharomyces carlsbergensis was investigated by fingerprint analysis of the methylated oligonucleotides derived from the various precursors. From the total of 37 ribose and 6 base-methyl groups found in 26-S rRNA, the two copies of the base-methylated nucleoside m3U as well as the doubly methylated sequence Um-Gm psi are not yet present in 37-S RNA, the predominant common precursor of 26-S and 17-S rRNA. Introduction of these methyl groups into the ribosomal sequences appears to take place at the level of 29-S pre-rRNA, the immediate precursor to 26-S rRNA. From the total of 18 ribose-methylated and 6 base-methylated nucleosides found in 17-S rRNA, the latter group (one copy of m7G, the m62A-m62A- sequence and the hypermodified methylated nucleoside "mX") is completely missing in 37-S pre-rRNA. The methyl group of m7G is introduced into 18-S pre-rRNA, the direct precursor of 17-S rRNA, in the nucleus. The -m62A-m62A- sequence is methylated after transport of the 18-S pre-rRNA to the cytoplasm prior to the final maturation into 17-S rRNA.  相似文献   

6.
From the relationship between the molar ratio of nucleosides calculated stoichiometrically from modified nucleoside occurrences in major RNA species and the proportion of rRNA to all of RNA contents in average tissues, the increase of rRNA contents in cancer tissues growing rapidly was found. Thus, we found that selected urinary modified nucleoside levels were very useful as a biological marker of cancer and AIDS, as well as a good indicator of whole-body metabolic conditions of RNAs.  相似文献   

7.
A G Atherly 《Cell》1974,3(2):145-151
  相似文献   

8.
Charette M  Gray MW 《IUBMB life》2000,49(5):341-351
Pseudouridine (5-ribosyluracil) is a ubiquitous yet enigmatic constituent of structural RNAs (transfer, ribosomal, small nuclear, and small nucleolar). Although pseudouridine (psi) was the first modified nucleoside to be discovered in RNA, and is the most abundant, its biosynthesis and biological roles have remained poorly understood since its identification as a "fifth nucleoside" in RNA. Recently, a combination of biochemical, biophysical, and genetic approaches has helped to illuminate the structural consequences of psi in polyribonucleotides, the biochemical mechanism of U-->psi isomerization in RNA, and the role of modification enzymes (psi synthases) and box H/ACA snoRNAs, a class of eukaryotic small nucleolar RNAs, in the site-specific biosynthesis of psi. Through its unique ability to coordinate a structural water molecule via its free N1-H, psi exerts a subtle but significant "rigidifying" influence on the nearby sugar-phosphate backbone and also enhances base stacking. These effects may underlie the biological role of most (but perhaps not all) of the psi residues in RNA. Certain genetic mutants lacking specific psi residues in tRNA or rRNA exhibit difficulties in translation, display slow growth rates, and fail to compete effectively with wild-type strains in mixed culture. In particular, normal growth is severely compromised in an Escherichia coli mutant deficient in a pseudouridine synthase responsible for the formation of three closely spaced psi residues in the mRNA decoding region of the 23S rRNA. Such studies demonstrate that pseudouridylation of RNA confers an important selective advantage in a natural biological context.  相似文献   

9.
Naturally occurring nucleoside modifications are an intrinsic feature of transfer RNA (tRNA), and have been implicated in the efficiency, as well as accuracy-of codon recognition. The structural and functional contributions of the modified nucleosides in the yeast tRNA(Phe) anticodon domain were examined. Modified nucleosides were site-selectively incorporated, individually and in combinations, into the heptadecamer anticodon stem and loop domain, (ASL(Phe)). The stem modification, 5-methylcytidine, improved RNA thermal stability, but had a deleterious effect on ribosomal binding. In contrast, the loop modification, 1-methylguanosine, enhanced ribosome binding, but dramatically decreased thermal stability. With multiple modifications present, the global ASL stability was mostly the result of the individual contributions to the stem plus that to the loop. The effect of modification on ribosomal binding was not predictable from thermodynamic contributions or location in the stem or loop. With 4/5 modifications in the ASL, ribosomal binding was comparable to that of the unmodified ASL. Therefore, modifications of the yeast tRNA(Phe) anticodon domain may have more to do with accuracy of codon reading than with affinity of this tRNA for the ribosomal P-site. In addition, we have used the approach of site-selective incorporation of specific nucleoside modifications to identify 2'O-methylation of guanosine at wobble position 34 (Gm34) as being responsible for the characteristically enhanced chemical reactivity of C1400 in Escherichia coli 16S rRNA upon ribosomal footprinting of yeast tRNA(Phe). Thus, effective ribosome binding of tRNA(Phe) is a combination of anticodon stem stability and the correct architecture and dynamics of the anticodon loop. Correct tRNA binding to the ribosomal P-site probably includes interaction of Gm34 with 16S rRNA C1400.  相似文献   

10.
11.
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia culicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history.  相似文献   

12.
13.
14.
This paper reports that the D-loop sequence of cellular mammalian ribosomal 5S RNAs is a natural leadzyme that specifically binds and cleaves in trans other RNA molecules in the presence of lead. The D-loops of these 5S rRNAs are similar in sequence to the active site of the leadzyme derived from tRNA(Phe), which cleaves a single bond in cis. We have devised a 12 nt model substrate based on the leadzyme sequence cleaved in trans by a 12 nt RNA molecule containing of the D-loop sequence. The model reaction occurs only at the appropriate concentration of lead and enzyme/substrate stoichiometry. The native 5S rRNA carries the same cleavage activity, although with different optimal lead concentration and stoichiometry. On the other hand, the isolated D-loop does not serve as a substrate when incubated with an RNA molecule with the potential to base pair with it and form the same internal loop (the bubble) present in the leadzyme-substrate complex. We show that the leadzyme cuts C-G, but not G-G or U-G linkages. The 5S rRNA leadzyme appears to have the shortest asymmetric pentanucleotide purine-rich loop flanked by two short double stranded RNAs. The leadzyme activity of native 5S rRNA may be an important aspect of lead toxicity in living cells. Because the leadzyme motif has been found in natural RNA species, its activity can be expressed in vivo even at a very low lead concentrations, of lead leading to the inactivation of other cellular RNAs. This might be one of the ways in which lead poisoning manifests itself at the molecular level. Lead toxicity is based not only on its binding to calcium and zinc binding proteins (such as Zn-fingers) and random hydrolysis of nucleic acids, but also, and most importantly, on the induction of the hydrolytic properties of RNA (RNA catalysis).  相似文献   

15.
Complete characterization of a biomolecule's chemical structure is crucial in the full understanding of the relations between their structure and function. The dominating components in ribosomes are ribosomal RNAs (rRNAs), and the entire rRNA—but a single modified nucleoside at position 2501 in 23S rRNA—has previously been characterized in the bacterium Escherichia coli. Despite a first report nearly 20 years ago, the chemical nature of the modification at position 2501 has remained elusive, and attempts to isolate it have so far been unsuccessful. We unambiguously identify this last unknown modification as 5-hydroxycytidine—a novel modification in RNA. Identification of 5-hydroxycytidine was completed by liquid chromatography under nonoxidizing conditions using a graphitized carbon stationary phase in combination with ion trap tandem mass spectrometry and by comparing the fragmentation behavior of the natural nucleoside with that of a chemically synthesized ditto. Furthermore, we show that 5-hydroxycytidine is also present in the equivalent position of 23S rRNA from the bacterium Deinococcus radiodurans. Given the unstable nature of 5-hydroxycytidine, this modification might be found in other RNAs when applying the proper analytical conditions as described here.  相似文献   

16.
Fifty-four species or isolates of insect trypanosomatids were examined for the presence of selected restriction enzyme sites in the small (SSU) and large (LSU) rRNA coding units of ribosomal genes. In the SSU, sites for Eco RI, Bgl II, Pst I, and Hind III were found to occur at the same location for all species examined, thus displaying a universal distribution among trypanosomatids. In the LSU, a site for Bgl II in the 24S-alpha sequence and sites for Hind III and Pst I in the 24S-beta sequence were found in all species examined. In contrast, a site for Pvu II in the SSU exhibited a genus-related distribution, being present in Crithidia and Herpetomonas but absent in Phytomonas. A site for Hind III in the 24S-alpha sequence of the LSU also exhibited genus-restricted distribution. The site was present in Crithidia but absent in Phytomonas and Herpetomonas. These findings were confirmed by dot hybridization with a synthetic oligonucleotide complementary to the 18S rRNA sequence containing the Pvu II site. Results point to the usefulness of restriction markers as diagnostic tools for distinguishing the lower trypanosomatid genera Crithidia, Herpetomonas, and Phytomonas at the same time revealing a marked complexity within the genus Leptomonas.  相似文献   

17.
18.
An autoantibody reactive with a conserved sequence of 28 S rRNA (anti-28 S) was identified in serum from a patient with systemic lupus erythematosus. Anti-28 S protected a unique 59-nucleotide fragment synthesized in vitro against RNase T1 digestion. RNA sequence analysis revealed that it corresponded to residues 1944-2002 in human 28 S rRNA and 1767-1825 in mouse 28 S rRNA. These sequences are identical and highly conserved throughout all known eukaryotic 28 S rRNAs. In addition, this fragment is homologous to residues 1052-1110 of Escherichia coli 23 S rRNA that lies within the GTP hydrolysis center of the 50 S ribosomal subunit. Anti-28 S and its Fab fragments strongly inhibited poly(U)-directed polyphenylalanine synthesis, but had no effect on ribosomal peptidyltransferase activity. This effect resulted from inhibition of the binding of elongation factors EF-1 alpha and EF-2 to ribosomes and of the associated GTP hydrolysis. The inhibitory effect was almost completely suppressed by preincubation of anti-28 S with 28 S rRNA or in vitro synthesized RNA fragments containing the immunoreactive region. These results show that the immunoreactive conserved region of 28 S rRNA participates in the interaction of ribosomes with the two elongation factors in protein synthesis.  相似文献   

19.
mRNA is transported to the dendritic regions by forming RNA granules, an aggregate of mRNA, ribosomal proteins, rRNA, and RNA-binding proteins such as Staufen. In this study, the dendritic transport of RNA granules was measured using the individual antibodies to ribosome-specific markers such as ribosomal L4 or S6 protein, and Y10B, a monoclonal antibody specific to rRNA. All the markers showed significant immunoreactivity in the dendritic regions of the hippocampal neurons. In addition, a GFP-tagged Staufen, a marker protein of the RNA granules, was colocalized with the Y10B and S6 signals in the dendrites. The S6 signals were also colocalized with the Y10B signals in the dendrites. Consistent with previous studies, the depolarization induced by KCl stimulation increased the ribosomal level, revealed by the S6 or Y10B immunostaining in the distal dendrites. These results demonstrate the utility of ribosomal markers for detecting the RNA granules or mRNA transport in dendrites.  相似文献   

20.
The control of ribosome synthesis has been a major focus in molecular biology for over 50 years. As protein synthesis is an essential, yet energetically costly, process, all cells (from bacteria to mammals) devote complex regulatory networks to fine-tune the expression of ribosomal RNA (and therefore ribosome synthesis) to the nutritional environment. In Escherichia coli, ribosomal RNA promoters are among the strongest in the cell and are regulated by trans-acting proteins (Fis and H-NS) and small molecules (guanosine 5'-diphosphate 3'-diphosphate and initiating nucleoside triphosphates). Recent work has dissected many of the molecular mechanisms responsible for the strength and regulation of rRNA promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号