首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study focuses on the influence of nitrogen (N) availability and species on rhizodeposition and on decomposition of rhizodeposits, roots and soil organic matter. Four perennial grass species were studied that are characteristic of grassland habitats that differ in nutrient availability. These perennial grass species, Holcus lanatus L., Festuca rubra L., Anthoxanthum odoratum L. and Festuca ovina L., were homogeneously labeled with 14CO2. Plants were grown on soil without N addition and with N addition (14 g N m–2). After 8 weeks, plants were harvested and root production and the remaining amount of rhizodeposits in the soil were measured. 14C-labelled roots were incubated in fresh soil. Decomposition was measured of 1) the labeled rhizodeposits in the soil in which the plants had been growing and 2) the labeled dead roots incubated in fresh soil, by trapping the evolved 14CO2, over 69 days.In general, decomposability of both roots and rhizodeposits increased when nitrogen availability increased. Moreover, the species differed in their response to N. Higher N supply increased total rhizodeposition of H. lanatus and the decomposability of rhizodeposited carbon compounds of this high fertility species was greater than of the low fertility species F. ovina, but lower than of A. odoratum. The presented study gives no evidence for a relation between root decomposition rate and the nutrient availability of the habitat of the four species. Overall, we suggest on the basis of the results that species can affect nutrient cycling by differences in rates of rhizodeposition and litter production. This offers a mechanism whereby species can influence species replacement during succession.  相似文献   

2.
Nitrogen losses from perennial grass species   总被引:1,自引:0,他引:1  
Nitrogen losses from plants may occur through a variety of pathways, but so far, most studies have only quantified losses of nutrients by above-ground litter production. We used 15N pulse labelling to quantify total nitrogen losses from above- and below-ground plant parts. Using this method we were able to include also pathways other than above-ground litter production. To test the hypothesis that species from nutrient-poor habitats lose less nitrogen than species from more fertile soils, six perennial grasses from habitats with a wide range of nutrient availability were investigated: Lolium perenne, Arrhenatherum elatius, Anthoxanthum odoratum, Festuca rubra, F. ovina and Molinia caerulea. The results of an experiment carried out in pots in a green-house at two fertility levels show that statistically significant losses occur through pathways other than above-ground litter production. In the low fertility treatment, most (70%) losses from L. perenne occurred by litter production, but in Ar. elatius, F. rubra, F. ovina and M. caerulea, more than 50% of labelled N losses took place by root turn-over, leaching or exudation from roots. When nutrient supply increased, the 15N losses in above-ground dead material increased in all species and in Ar. elatius, A. odoratum and F. rubra the 15N losses via other pathways decreased. Ranked according to decreasing turnover coefficient the sequence of species was: L. perenne, A. odoratum, F. rubra, F. ovina, Ar. elatius, M. caerulea. These results suggest that species adapted to sites with low availability of nutrients lose less nitrogen (including above- and below-ground losses) than species adapted to more fertile soils.  相似文献   

3.
Root systems are highly plastic as they express a range of responses to acquire patchily distributed nutrients. However, the ecological significance of placing roots selectively in nutrient hotspots is still unclear. Here, we investigate under what conditions selective root placement may be a significant functional trait that determines belowground competitive ability. We studied two grasses differing in root foraging behaviour, Festuca rubra and Anthoxanthum odoratum. The plants were grown in stable and more dynamic heterogeneous environments, by switching nutrient patches halfway through the experiment. A. odoratum was a factor of two less selective in placing its roots into nutrient-rich patches than F. rubra. A. odoratum produced overall higher root length densities with higher specific root length than F. rubra and acquired more nutrients. A. odoratum appeared to be the superior competitor, irrespective of the nutrient dynamics. Our results suggest that root behaviour consisting of producing high root length densities at relatively low biomass investments can be a more effective foraging strategy than placing roots selectively in nutrient hotspots. When understanding the functionality of root traits among different species, specific root length may play a key role.  相似文献   

4.
Otsus M  Zobel M 《Oecologia》2004,138(2):293-299
Festuca ovina is the abundant matrix-forming species and F. rubra a subordinate species in shallow-soil calcareous grasslands. F. pratensis is a transient species, occurring sparsely in this community. We hypothesised that the different abundances of these three species are primarily due to the differential effect of moisture conditions on their germination and early establishment, and that the effect of the pattern of rainfall intensity depends on the presence or absence of a bryophyte layer. We studied the dependence of the germination and establishment of the three fescue species on the moisture conditions both in the laboratory and in the patches of intact grassland community (microcosms). In a laboratory germination experiment, F. pratensis showed the highest, F. rubra , the intermediate and F. ovina, the lowest drought tolerance. In microcosms, the establishment of F. ovina was the highest. At the same time, the annual mortality of seedlings of F. ovina was the lowest. All three species responded positively to an increasing irrigation level. Differently from F. ovina, F. rubra showed a positive response only in plots from which the bryophyte layer had been removed, while F. pratensis responded positively to both irrigation and bryophyte removal. We conclude that moisture conditions have a differential effect on the three fescue species mainly in the seedling establishment, not in the germination phase. For the successful establishment of F. rubra and F. pratensis, the coincidence of high rainfall and local disturbance, removing bryophytes, is required. The presence or absence of bryophytes had no effect on establishment in dry years, while in rainy years the removal of bryophytes has a clear positive effect.  相似文献   

5.
To investigate how the level of microbial activity in grassland soils affects plant–microbial competition for different nitrogen (N) forms, we established microcosms consisting of a natural soil community and a seedling of one of two co-existing grass species, Anthoxanthum odoratum or Festuca rubra. We then stimulated the soil microbial community with glucose in half of the microcosms and followed the transfer of added inorganic (15NH415NO3) and organic (glycine-2-13C-15N) N into microbial and plant biomass. We found that microbes captured significantly more 15N in organic than in inorganic form and that glucose addition increased microbial 15N capture from the inorganic source. Shoot and root biomass, total shoot N content and shoot and root 15N contents were significantly greater for A. odoratum than F. rubra, whereas F. rubra had higher shoot and root N concentrations. Where glucose was not added, A. odoratum had higher shoot 15N content with organic than with inorganic 15N addition, whereas where glucose was added, both species had higher shoot 15N content with inorganic than with organic 15N. Glucose addition had equally negative effects on shoot growth, total shoot N content, shoot and root N concentrations and shoot and root 15N content for both species. Both N forms produced significantly more shoot biomass and higher shoot N content than the water control, but the chemical form of N had no significant effect. Our findings suggest that plant species that are better in capturing nutrients from soil are not necessarily better in tolerating increasing microbial competition for nutrients. It also appears that intense microbial competition has more adverse effects on the uptake of organic than inorganic N by plants, which may potentially have significant implications for interspecific plant–plant competition for N in ecosystems where the importance of organic N is high and some of the plant species specialize in use of organic N.  相似文献   

6.
A microcosm unit is described which readily allows manipulation of experimental conditions to enable the subsequent impact on root exudation release to be monitored with time. Festuca ovina and Plantago lanceolata seedlings were grown in this microcosm unit over a 34 day experimental period under conditions of high (3.75 mol m–3 N) or low (1.25 mol m–3 N) nitrate-nitrogen treatment. At the end of the experimental period the seedlings in the microcosms were labelled with [14C]-CO2 and the fate of the label within the plant and its release by the roots monitored. Total organic carbon (TOC) content of the collected exudate material was measured throughout the experimental period as well as during the 14C-chase period and comparison of plant C budgets using these two measurements is discussed. Nitrogen treatment as found to have a greater effect on exudate release by F. ovina than by P. lanceolata seedlings as indicated by both the total organic carbon and 14C results. The use and applications of the microcosm unit are discussed.  相似文献   

7.
Anthriscus sylvestris (L.) Hoffm., is characteristic of productive habitats, and Festuca ovina of unproductive ones. The two species were grown at steady-state growth with either free access to all nutrients or severe nitrogen limitation. The maximum relative growth rate of the two species was similar-about 0.20 day-1. Root:shoot partitioning at nitrogen limitation differed between the species. A. sylvestris allocated less biomass to fine-roots than at free access and F. ovina allocated more.  相似文献   

8.
Food Preference of Wireworms Analyzed with Multinomial Logit Models   总被引:2,自引:0,他引:2  
Many species of wireworms (larvae of click beetles, Elateridae) are poly- phagous root herbivores. In grasslands under restoration succession with various grass species, we aim to determine the role of wireworms in aboveground vegetation succession. Therefore, it is crucial to know whether wireworms prefer some food plants to others. We have investigated the root preference to different grass species for Agriotes obscurus and Athous haemorrhoidalis and whether these preferences can be explained by covariates. In Experiment 1, individual wireworms could choose between four different plants, one of each species (Anthoxanthum odoratum, Festuca rubra, Holcus lanatus, and Lolium perenne). In Experiment 2, groups of wireworms were released into the soil in the center of 16 plants (4 from each species). We used multinomial logit models (MLMs) to analze the data. In the appendix the use of multinomial response models is clarified with a fictitious example, using the SAS statistic software package. No preference was found in Experiment 1. In Experiment 2 we found differences in attractiveness of plant species depending on wireworm species: A. obscurus preferred grass species from nutrient-rich grasslands (L. perenne and H. lanatus). Both wireworm species disliked F. rubra. The distance from the release point influenced the probability of being found at a certain place at the end of the experiment: wireworms tended to stay in the proximity of the release point. A. haemorrhoidalis was more often found farther from the point of release than A. obscurus. Dispersal was farther from the release point in experiments with young plants (6 weeks) compared to older ones (9 weeks). Results are discussed in a broad ecological context.  相似文献   

9.
以中国科学院巴音布鲁克草原生态系统研究站长期围栏内外的羊茅(Festuca ovina)、天山赖草(Leymus tiansecalinus)、二裂委陵菜(Potentilla bifurca)和鹅绒委陵菜(Potentilla anserine)4种植物叶片和土壤为研究对象,分析了放牧与围封对植物叶片和土壤C、N、P的化学计量特征的影响。结果表明,围封样地土壤养分浓度整体高于放牧样地(P0.05),全氮(TN)浓度除外。围封显著增加羊茅叶片C、N浓度(P0.05),对P浓度影响不显著;围封显著增加鹅绒委陵菜叶片的C浓度,但是显著降低叶片的N和P浓度(P0.05),围封对天山赖草和二裂委陵菜养分含量影响不显著。围封显著增加鹅绒委陵菜C∶N和C∶P(P0.05);围封显著降低羊茅C∶N、C∶P和增加N∶P(P0.05);围封显著降低二裂委陵菜C∶N(P0.05),对天山赖草的化学计量特征影响不显著。不同植物对围封的响应不同,意味着长期围封可能会改变天山高寒草原生态系统的结构。围封降低优势种(羊茅)的固碳能力,增加退化期出现的代表性植物(鹅绒委陵菜)的固碳能力,表明在长期围封下植物凋落物中的杂类草(鹅绒委陵菜)可能更多的为土壤提供碳来源,也能促进优势禾本科物种的氮含量和碳含量的增加。  相似文献   

10.
Bottner  Pierre  Pansu  Marc  Sallih  Zaher 《Plant and Soil》1999,216(1-2):15-25
The aim of this experiment was to study the effect of living roots on soil carbon metabolism at different decomposition stages during a long-term incubation. Plant material labelled with 14C and 15N was incubated in two contrasting soils under controlled laboratory conditions, over two years. Half the samples were cropped with wheat (Triticum aestivum) 11 times in succession. At earing time the wheat was harvested, the roots were extracted from the soil and a new crop was started. Thus the soils were continuously occupied by active root systems. The other half of the samples was maintained bare, without plants under the same conditions. Over the 2 years, pairs of cropped and bare soils were analysed at eight sampling occasions (total-, plant debris-, and microbial biomass-C and -14C). A five compartment (labile and recalcitrant plant residues, labile microbial metabolites, microbial biomass and stabilised humified compounds) decomposition model was fitted to the labelled and soil native organic matter data of the bare and cropped soils. Two different phases in the decomposition processes showed a different plant effect. (1) During the initial fast decomposition stage, labile 14C-material stimulated microbial activities and N immobilisation, increasing the 14C-microbial biomass. In the presence of living roots, competition between micro-organisms and plants for inorganic N weakly lowered the measured and predicted total-14C mineralisation and resulted in a lower plant productivity compared to subsequent growths. (2) In contrast, beyond 3–6 months, when the labile material was exhausted, during the slow decomposition stage, the presence of living roots stimulated the mineralisation of the recalcitrant plant residue-14C in the sandy soil and of the humified-14C in the clay soil. In the sandy soil, the presence of roots also substantially stimulated decomposition of old soil native humus compounds. During this slow decomposition stage, the measured and predicted plant induced decrease in total-14C and -C was essentially explained by the predicted decrease in humus-14C and -C. The 14C-microbial biomass (MB) partly decayed or became inactive in the bare soils, whereas in the rooted soils, the labelled MB turnover was accelerated: the MB-14C was replaced by unlabelled-C from C derived from living roots. At the end of experiment, the MB-C in the cropped soils was 2.5–3 times higher than in the bare soils. To sustain this biomass and activity, the model predicted a daily root derived C input (rhizodeposition), amounting to 5.4 and 3.2% of the plant biomass-C or estimated at 46 and 41% of the daily net assimilated C (shoot + root + rhizodeposition C) in the clay and sandy soil, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Four co-existing species (Deschampsia flexuosa, Festuca ovina,Juncus squarrosus and Nardus stricta) were subjected to clippingand the net photosynthetic and dark respiration rates were followedafter this treatment for 50 d. Concurrently carbon partitioningin F. ovina plants clipped initially and again at 50 and 100d was examined. An expansion of new leaf lamina was observed with F. ovina,which had a greater net photsynthetic rate per unit leaf areathan unclipped lamina. The remaining leaf lamina (stubble) afterclipping also showed net photosynthetic and dark respirationrates greater than unclipped lamina; these responses were uniqueto F. ovina plants. N. stricta was the only other species toattain a pre-clipping photosynthetic rate within 6 d. Clipped F. ovina plants showed a change in carbon allocationpattern, with a reduction in carbon allocated to roots. 14Caccumulated in roots and stubble was shown to have a role inregrowth, as was current assimilate via the production of newleaf lamina. Plants initially clipped before exposure to 14C,redistributed less 14C to new shoot growth and, therefore, lostless when subsequently clipped. Further redistribution of 14Ccame from leaf stubble tissue and not at the expense of roots.The variation between species in clipping response are discussedin terms of the implications for coexistence. Carbon partitioning, clipping, gas exchange, grasses  相似文献   

12.
We studied the effects of differences in root growth and nutrient pool on the competitive ability of Festuca ovina (short grass), Arrhenatherum elatius and Calamagrostis epigejos (tall grasses) grown in monocultures and in mixtures of homogeneous and heterogeneous environments during two growing seasons. Analysis of variance revealed a significant effect of plant species on nutrient concentrations in above-ground biomass and of substrate type on contents of N, K, Ca, Mg in biomass. The ANOVA also confirmed the significant effect of competitive environment on the concentration of N, K in above-ground biomass. In heterogeneous environments, both tall grasses (in competition with F. ovina) were able to produce more roots in the nutrient-rich patches and to accumulate more nitrogen in plant tissues, which was associated with higher yield of their above-ground biomass. Thus, the relative competitive ability for nutrients of both tall grasses was higher than that of F. ovina. This competitive ability of A. elatius to C. epigejos increased in heterogeneous treatments.  相似文献   

13.
Gorissen  A.  Cotrufo  M.F. 《Plant and Soil》2000,224(1):75-84
Leaf and root tissue of Lolium perenne L., Agrostis capillaris L. and Festuca ovina L. grown under ambient (350 μl l-1 CO2) and elevated (700 μl l-1) CO2 in a continuously 14C-labelled atmosphere and at two soil N levels, were incubated at 14°C for 222 days. Decomposition of leaf and root tissue grown in the low N treatment was not affected by elevated [CO2], whereas decomposition in the high N treatment was significantly reduced by 7% after 222 days. Despite the increased C/N ratio (g g-1) of tissue cultivated at elevated [CO2] when compared with the corresponding ambient tissue, there was no significant correlation between initial C/N ratio and 14C respired. This finding suggests that the CO2-induced changes in decomposition rates do not occur via CO2-induced changes in C/N ratios of plant materials. We combined the decomposition data with data on 14C uptake and allocation for the same plants, and give evidence that elevated [CO2] has the potential to increase soil C stores in grassland via increasing C uptake and shifting C allocation towards the roots, with an inherent slower decomposition rate than the leaves. An overall increase of 15% in 14C remaining after 222 days was estimated for the combined tissues, i.e., the whole plants; the leaves made a much smaller contribution to the C remaining (+6%) than the roots (+26%). This shows the importance of clarifying the contribution of roots and leaves with respect to the question whether grassland soils act as a sink or source for atmospheric CO2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data. The model simulates carbon losses from stems and leaves, using a double exponential decay function, with the temperature sum as independent variable. Mineralization of nitrogen is not calculated via microbial growth rates, but simulated on the basis of the carbon utilization efficiency of the microorganisms and the critical C/N ratio, i.e. the C/N ratio of the litter at which the microbial demand for nitrogen is met exactly. The parameter values for leaching fractions of carbon and nitrogen, relative decay rates, microbial carbon utilization efficiencies and critical C/N ratios were derived from a litter bag experiment with 12 litter types (species) including both green and dead materials, carried out in two unfertilized grassland ecosystems differing in production level. The model was evaluated using a cross-validation method, in which one species was omitted from the parametrization procedure, and its decomposition and mineralization were predicted by the resulting model. In general there was good agreement between the observed and predicted amounts of carbon and nitrogen remaining for all green litter types/species, but carbon and nitrogen dynamics in the dead material of Festuca rubra were poorly predicted. This disparity has been attributed to the proportion of leaves in the material of Festuca rubra (95%) being far beyond the range of leaf proportions in the three litter types the calibration set consisted of (8–35%). When the data of all litter types were used to determine the model parameters, good agreement was obtained between measured and simulated values for the changes in nitrogen and carbon in all litter types of both the green and dead material series. Optimization yielded parameter values for microbial carbon utilization efficiencies of 0.30 for microorganisms associated with green litter and 0.35 for those associated with dead litter. The critical C/N ratios for green and dead material were found to be 29 and 36, respectively.  相似文献   

15.
A field replacement experiment was used to study the interspecific interaction among three perennial grasses (Elymus nutans, Festuca sinensis and Festuca ovina) that are distributed widely on the east Qinghai‐Tibetan plateau. The experiment consisted of four different species mixtures at four seeding densities and two fertilizer levels. Above‐ground biomass, relative yield and complementary effect were determined from harvested shoot dry weights. The results showed that above‐ground biomass was greater in all species mixtures than in monocultures. The difference between the observed and expected relative yield was greater than zero in all mixtures for E. nutans and was greater than zero in the F. sinensis/F. ovina mixture, but was below zero in all other mixtures for F. sinensis, and was below zero in all mixtures for F. ovina. The complementary effect was more negative across all seeding densities except at a seeding density of 400 seeds/m2, and was negative across all mixtures except the F. sinensis/F. ovina mixture. In addition, fertilization had an insignificant impact on the relative yield, but a significant impact on the complementary effect. Fertilization enhanced negative interspecific interaction among the species.  相似文献   

16.
The deposition of organic compounds from plant roots is a key determinant of rhizosphere microbial activity and community structure. Consequently, C-flow from roots to soil is an important process in coupling plant and microbial productivity, via impacts on microbial nutrient cycling in soil. Experimentally, isotopic tracers (13C or 14C) are used to track C inputs to soil and microbial communities. However, in many such studies the relationship between labelled C-flows and total C-flows are not established, limiting the interpretative value of the results. In this study, we applied steady-state near natural abundance 13CO2 labelling to determine the impact of partial defoliation of Festuca rubra on root exudation. This approach in axenic culture facilitated determination of the contribution of pre- and post-defoliation assimilates both to root C-flow and plant tissues. The results demonstrated that total root exudation was increased in the two days following defoliation. This was concurrent with reduced net CO2 assimilation and reduced allocation of post-defoliation assimilates below-ground and to active root meristems. Through determination of the δ13C of root exudates, it was established that the source of the increased root exudation was pre-defoliation assimilate. However, this response was transient, with reduced deposition of pre- and post-defoliation assimilates from roots during the period 2–4 d following defoliation. The results highlight the limitations of pulse-labelling approaches as a means of quantifying impacts of treatments on root exudation, particularly where the treatment is likely to affect plant C-partitioning or the balance between deposition to, and re-mobilization from, C-storage pools.  相似文献   

17.
The objective of this study was to determine how increasing atmospheric CO2 change plant tissue quality in four native grassland grass species (Agrostis stolonifera, Anthoxanthum odoratum, Festuca rubra, Poa pratensis) which are all larval food‐plants of Coenonympha pamphilus (Lepidoptera, Satyridae). We assessed the effect of these changes on the performance and larval food‐plant preference of C. pamphilus in a greenhouse experiment. Furthermore, we tested the interactive effects of elevated CO2 and soil nutritional availability in F. rubra and its effect an larval development of C. pamphilus. In general, elevated CO2 decreased leaf water concentration, nitrogen concentration and specific leaf area (SLA), while leaf starch concentration was increased in all grass species. A species‐specific reaction to elevated CO2 was only found for foliar starch concentration. P. pratensis did not increase its starch concentration under elevated CO2 conditions, whereas the other three species did. Fertilisation, investigated only for F. rubra, increased leaf nitrogen concentration and amplified the CO2‐induced decrease in leaf nitrogen. Development time of C. pamphilus was on the average prolonged by two days under elevated CO2 and the prolongation differed from 0.7 to 5.3 days among food‐plant species. Pupal fresh weight differed marginally between CO2 treatments. Fertilisation of the larval food‐plant F. rubra shortened development time by one day and significantly increased pupal and adult fresh weights. C. pamphilus larvae showed a clear food‐plant preference among grass species at the age of 36 h or older. Additionally, a change of food‐plant preference under elevated CO2 was found. Larvae at ambient CO2 preferred Agrostis stolonifera and F. rubra, while under elevated CO2Anthoxanthum odoratum and P. pratensis were preferred. The present study demonstrates that larval development of C. pamphilus is affected by food‐plant species and CO2 induced changes in foliar chemistry. Although we found some species‐specific reactions to elevated CO2 for foliar chemistry, no such CO2 by species interaction was found for insect development. The change in food‐plant preference of larvae under elevated CO2 implies potential changes in selection pressure for grass species and might therefore affect evolutionary processes.  相似文献   

18.
Selected NaCl tolerant and unselected control lines ofHolcus lanatus L.,Lolium perenne L.,Dactylis glomerata L., andFestuca rubra L. were grown in sand culture at 0, 100, 200, 250, and/or 300 ml m-3NaCl for seven weeks. The tolerant lines of all four species produced significantly greater both shoot and root dry matter at all NaCl treatments compared with the unselected control lines. Na+, K+, Cl-, Ca2+, and Mg2+ contents of leaf, stalk, and roots of each species were determined. The tolerant lines ofH. lanatus contained less Na+ and less Ca2+ but higher K+ in shoots, compared with the unselected line. By contrast theL. perenne tolerant line had higher Na+ and Cl- contents at 250, and 300 mol m-3 NaCl in shoots than the unselected line suggesting a halophytic nature of the tolerant line.D. glomerata accumulated greater quantities of ions compared with the other species examined. The tolerant line contained significantly less Cl- but more K+ in its shoots than the unselected line. Na+, Cl-, and K+ contents in the shoots of the tolerant line ofF.rubra were higher than in the unselected line shoots. Therefore selection for NaCl tolerance may provide useful material for examining the basis of tolerance.  相似文献   

19.
Root hydrocarbons as potential markers for determining species composition   总被引:1,自引:0,他引:1  
Grasslands can be a complex mixture of plant species. A method is described to allow the identification of both roots and shoots of five different grass species, thus permitting greater knowledge about whole plant allocation and competition in mixed pastures. The five species were Lolium perenne, Festuca ovina, Festuca rubra, Poa trivialis and Agrostis capillaris. N‐alkanes with odd‐numbers of carbon atoms in the chains predominate in plants and in the five grass species studied, concentrations of alkanes of chain length of C29, C31 and C33 were highest. Average concentrations of C27‐C33 alkanes in shoots and roots were 187 and 11 mg kg ? 1, respectively. This wide range of values required considerable modifications to the method of analysis, including expressing concentrations on an organic matter basis and scaling‐down the procedure. The n‐alkane concentrations in roots are different from those in shoots and therefore values from shoots cannot be used to predict the composition in roots. Using a canonical variate analysis, all five grass species could be separated using concentrations of C26, C31 and C33 values in the roots. The greatest difference occurred between A. capillaris and the others, whereas discrimination was least between the two Festuca species. Defoliation had contrasting effects on the concentration of a few n‐alkanes, but not in the n‐alkanes used to discriminate between grass species. Alkane analysis shows great potential as a method to quantify the species composition of the root biomass beneath mixed pasture species.  相似文献   

20.
Abstract. Seed banks in cattle dung, soil under cattle dung and soil under vegetation and growth response of plant species to the changes in soil nitrogen availability were studied in an alvar limestone grassland on Öland, Sweden, in order to analyse the impact of dung deposition and decomposition on the formation of patches of plant species. Results suggest that patches of four plant species could result from cattle dung deposition and decomposition. Impact of dung could proceed in three ways: (1) by changing the relative abundance of species in the soil seed bank under dung, and/or (2) by influencing the deposition of seeds in the dung, and/or (3) by intensifying the growth of some species through nutrient release. Species patches could result from one or more of these aspects. For instance, patches of Arenaria serpyllifolia may be induced by dung deposition because of the dominance of its seeds in dung, while the pattern of Cerastium semidecandrum and Festuca ovina may be due to the abundance of their seeds in the soil seed bank under dung and their positive growth response to increased nitrogen availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号