首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show the application of a novel optical on-line sensor fixed in spinner flasks for the online monitoring of dissolved O2 concentrations during mammalian cell growth. Using this sensor that requires only minute changes to the flask to be made, we could determine the volumetric O2 transfer coefficient as well as O2 consumption rates. Under normal growth conditions the cells did not undergo O2 limitation. Also, the transfer of O2 from the atmosphere to the spinner flasks is influenced by the use of screw caps. The on-line measurement was further applied to determine the O2 uptake rates which can then be used to monitor the metabolic state of the cells and also for online process monitoring.  相似文献   

2.
We describe a study of oxygen transfer in shake flasks using a non-invasive optical sensor. This study investigates the effect of different plugs, presence of baffles, and the type of media on the dissolved oxygen profiles during Escherichia coli fermentation. We measured the volumetric mass transfer coefficient (k(L)a) under various conditions and also the resistances of the various plugs. Finally, we compared shake flask k(L)a with that from a stirred tank fermentor. By matching k(L)a's we were able to obtain similar growth and recombinant protein product formation kinetics in both a fermentor and a shake flask. These results provide a quantitative comparison of fermentations in a shake flask vs. a bench-scale fermentor and should be valuable in guiding scale-up efforts.  相似文献   

3.
Xie K  Zhang XW  Huang L  Wang YT  Lei Y  Rong J  Qian CW  Xie QL  Wang YF  Hong A  Xiong S 《Cytotechnology》2011,63(4):345-350
A novel, optical sensor was fixed in a new type of disposable bioreactor, Tubespin, for the on-line (real-time) monitoring of dissolved oxygen concentrations during cell culture. The cell density, viability and volumetric mass transfer coefficient were also determined to further characterize the bioreactors. The kLa value of the Tubespin at standard conditions was 24.3 h−1, while that of a spinner flask was only 2.7 h−1. The maximum cell density in the Tubespin bioreactor reached 6 × 106 cells mL−1, which was two times higher than the cell density in a spinner flask. Furthermore, the dynamic dissolved oxygen level was maintained above 90% air-saturation in the Tubespin, while the value was only 1.9% in a spinner flask. These results demonstrate the competitive advantage of using the Tubespin system over spinner flasks for process optimization and scale-down studies of oxygen transfer and cell growth.  相似文献   

4.
During the past decade, novel disposable cell culture vessels (generally referred to as Process Scouting Devices or PSDs) have become increasingly popular for laboratory scale studies and seed culture generation. However, the lack of engineering characterization and online monitoring tools for PSDs makes it difficult to elucidate their oxygen transfer capabilities. In this study, a mass transfer characterization (kLa) of sensor enabled static and rocking T‐flasks is presented and compared with other non‐instrumented PSDs such as CultiFlask 50®, spinner flasks, and SuperSpinner D 1000®. We have also developed a mass transfer empirical correlation that accounts for the contribution of convection and diffusion to the volumetric mass transfer coefficient (kLa) in rocking T‐flasks. We also carried out a scale‐down study at matched kLa between a rocking T75‐flask and a 10 L (2 L filling volume) wave bioreactor (Cultibag®) and we observed similar DO and pH profiles as well as maximum cell density and protein titer. However, in this scale‐down study, we also observed a negative correlation between cell growth and protein productivity between the rocking T‐flask and the wave bioreactor. We hypothesize that this negative correlation can be due to hydrodynamic stress difference between the rocking T‐flask and the Cultibag. As both cell culture devices share key similarities such as type of agitation (i.e., rocking), oxygen transfer capabilities (i.e., kLa) and disposability, we argue that rocking T‐flasks can be readily integrated with wave bioreactors, making the transition from research‐scale to manufacturing‐scale a seamless process. Biotechnol. Bioeng. 2012;109: 2295–2305. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Oxygen mass transfer in shake flasks is an important aspect limiting the culture of aerobic microorganisms. In this work, mass transfer of oxygen through a closure and headspace of shake flasks is investigated. New equations for prediction of kGa in shake flasks with closures are introduced. Using Pseudomonas putida, microbial growth on glucose (fast metabolism) and phenol (slow metabolism) in shake flasks with closures were studied, considering both substrate and oxygen restrictions. A combined model for oxygen mass transfer and microbial growth is shown to accurately predict experimental oxygen concentrations and oxygen yield factors during growth experiments more accurately than previous models.  相似文献   

6.
The effect of dissolved oxygen concentrations on the behavior of Serratia marcescens and on yields of asparaginase and prodigiosin produced in shaken cultures and in a 55-liter stainless-steel fermentor was studied. A range of oxygen transfer rates was obtained in 500-ml Erlenmeyer flasks by using internal, stainless-steel baffles and by varying the volume of medium per flask, and in the fermentor by high speed agitation (375 rev/min) or low rates of aeration (1.5 volumes of air per volume of broth per min), or both. Dissolved oxygen levels in the fermentation medium were measured with a membrane-type electrode. Peak yields of asparaginase were obtained in unbaffled flasks (3.0 to 3.8 IU/ml) and in the fermentor (2.7 IU/ml) when the level of dissolved oxygen in the culture medium reached zero. A low rate of oxygen transfer was accomplished by limited aeration. Production of prodigiosin required a supply of dissolved oxygen that was obtainable in baffled flasks with a high rate of oxygen transfer and in the fermentor with a combination of high-speed agitation and low-rate aeration. The fermentation proceeded at a more rapid rate and changes in pH and cell populations were accelerated by maintaining high levels of dissolved oxygen in the growth medium.  相似文献   

7.
The production of ethylene and carbon dioxide by Pinus radiata D. Don cotyledons cultured on shoot-forming medium in sealed Erlenmeyer flasks was studied. To establish the role of these gases on morphogenesis three experimental approaches were used: (1) capping the flasks with serum caps on various days, and removing the serum caps at different stages of morphogenesis, (2) absorbing the gases by setting up traps singly and in combination during the various stages of differentiation and (3) incubating the cultures under continuous flow of constant gas mixtures. The results indicate that both ethylene and carbon dioxide, which build up during the first 10 to 15 days of culture, promote morphogenesis. Excessive accumulation after the initiation of buds causes some degree of dedifferentiation. When both the gases were eliminated from the flasks, bud formation and growth were inhibited. In the absence of oxygen, ethylene and carbon dioxide fail to influence growth and morphogenesis.  相似文献   

8.
Experimentation in shaken microplate formats offers a potential platform technology for the rapid evaluation and optimization of cell culture conditions. Provided that cell growth and antibody production kinetics are comparable to those found in currently used shake flask systems then the microwell approach offers the possibility to obtain early process design data more cost effectively and with reduced material requirements. This work describes a detailed engineering characterization of liquid mixing and gas–liquid mass transfer in microwell systems and their impact on suspension cell cultures. For growth of murine hybridoma cells producing IgG1, 24‐well plates have been characterized in terms of energy dissipation (P/V) (via Computational Fluid Dynamics, CFD), fluid flow, mixing and oxygen transfer rate as a function of shaking frequency and liquid fill volume. Predicted kLa values varied between 1.3 and 29 h?1; liquid‐phase mixing time, quantified using iodine decolorization experiments, varied from 1.7 s to 3.5 h; while the predicted P/V ranged from 5 to 35 W m?3. CFD simulations of the shear rate predicted hydrodynamic forces will not be detrimental to cells. For hybridoma cultures however, high shaking speeds (>250 rpm) were shown to have a negative impact on cell growth, while a combination of low shaking speed and high well fill volume (120 rpm, 2,000 µL) resulted in oxygen limited conditions. Based on these findings a first engineering comparison of cell culture kinetics in microwell and shake flask formats was made at matched average energy dissipation rates. Cell growth kinetics and antibody titer were found to be similar in 24‐well microtiter plates and 250 mL shake flasks. Overall this work has demonstrated that cell culture performed in shaken microwell plates can provide data that is both reproducible and comparable to currently used shake flask systems while offering at least a 30‐fold decrease in scale of operation and material requirements. Linked with automation this provides a route towards the high throughput evaluation of robust cell lines under realistic suspension culture conditions. Biotechnol. Bioeng. 2010; 105: 260–275. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
n-Hexadecane was added to fermentation media to increase the medium oxygen solubilities, thus enhancing oxygen transfer rates in penicillin fermentations. For shake flask fermentations, cells were found to grow faster in the flasks with n-hexadecane than those without. The addition of n-hexadecane to penicillin fermentations was shown to significantly increase cell growth and penicillin production and reduce formation of mycelial pellets. The result was attributed to the enhancement of oxygen transfer in mycelial fermentations due to the higher oxygen solubilities of fermentation media achieved by adding n-hexadecane.  相似文献   

10.
AIMS: Characterization of beta-glucan production from Botryosphaeria rhodina DABAC-P82 by detecting simultaneously glucan-hydrolytic enzymes and their localization, culture medium rheology and oxygen transfer. METHODS AND RESULTS: Mycelium growth, beta-glucan production, substrate consumption and glucan-hydrolytic enzymes were monitored both in shaken flasks and in a 3-l stirred-tank bioreactor. Glucan production (19.7 and 15.2 g l(-1), in flask and bioreactor, respectively) was accompanied by extra-cellular and cell-bound beta-glucanase and beta-glucosidase activities. In the bioreactor scale, in the time interval of 0-78 h the apparent viscosity of the culture broth exhibited a general increase; thereafter, it began to reduce, probably because of the above glucan-hydrolytic activities. Moreover, the culture media collected after 45 h behaved as solid-like materials at shear rates smaller than 0.001 s(-1), as pseudo-plastic liquids in the middle shear rate range and as Newtonian ones at shear rates greater than 1000 s(-1). CONCLUSION: The greatest beta-glucan accumulation in the bioreactor was found to be associated with nitrogen and dissolved oxygen concentrations smaller than 0.15 g l(-1) and 25%, respectively, and with the peak points of the glucan-degrading enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: A careful analysis of the critical factors (such as, culture broth rheology, oxygen mass transfer and glucan-hydrolytic enzymes) limiting the beta-glucan production by B. rhodina is a prerequisite to maximize beta-glucan yield and production, as well as to define the process flow sheet capable of maximizing biopolymer recovery, solvent re-utilization and glucose consumption.  相似文献   

11.
Radiation survival curves of EMT6/Ed spheroids have been obtained under conditions which eliminate changes in oxygen concentration between growth and irradiation. These curves show a high-dose, resistant component which is nearly parallel to the curves obtained when spheroids were irradiated under nitrogen. Thus EMT6 spheroids appear to model accurately the radiation responses of EMT6 tumors. In contrast, when spheroids were grown to relatively high density (300-400 spheroids per 250-ml spinner flask), then separated into several flasks for irradiation, an increase in oxygen concentration in the medium occurred which fully oxygenated the previously hypoxic cells. The two causes for the oxygen depletion in sealed growth flasks were quantitated. Depletion of total oxygen in the flask occurred, and, more importantly, oxygen consumption kept the growth medium well below equilibrium with the oxygen in the gas phase. Smaller but similar effects on oxygen concentration were found in flasks containing V79 spheroids.  相似文献   

12.

Background  

Dissolved oxygen tension (DOT) is an important parameter for evaluating a bioprocess. Conventional means to measure DOT in shake flasks using fixed Clark-type electrodes immersed in the bulk liquid are problematic, because they inherently alter the hydrodynamics of the systems. Other approaches to measure DOT that apply fluorescing sensor spots fixed at the inside wall of a shake flask are also suboptimal. At low filling volumes for cultivating microorganisms with a high oxygen demand, the measured DOT signal may be erroneous. Here, the sensor spot is sometimes exposed to gas in the head space of the flask. Merely repositioning the sensor spot elsewhere in the flask does not address this problem, since there is no location in the shake flask that is always covered by the rotating bulk liquid. Thus, the aim of this prospective study is first, to verify the systemic error of Clark-type electrodes for measuring DOT in shake flasks. The second principle aim is to use the newly built "flexitube optical sensor" to verify potential errors in conventional optical DOT measurements based on fixed sensor spots.  相似文献   

13.
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanella oneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.  相似文献   

14.
人皮肤成纤维细胞在不同培养系统中的生长代谢特性   总被引:2,自引:0,他引:2  
大面积烧伤病人及多种皮肤溃疡病人很难用自体皮肤移植来进行治疗.早期治疗方法采用尸体来源的皮肤移植,但由于来源有限、且有传播疾病的危险,因此应用组织工程技术构建生物活性人工皮肤已成为近十几年来在组织工程和创伤治疗领域的研究热点,目前已有几种人工皮肤成功地走向临床[1].然而,在构建大面积皮肤组织过程中,如何大量制备皮肤种子细胞仍然是一大棘手的难题,成为人体皮肤组织工程迫切需要解决的技术关键.获得大量扩增的皮肤细胞,解决种子细胞的供应问题,是构建人工皮肤的一个关键.  相似文献   

15.
The maximum gas-liquid mass transfer capacity of 250ml shaking flasks on orbital shaking machines has been experimentally investigated using the sulphite oxidation method under variation of the shaking frequency, shaking diameter, filling volume and viscosity of the medium. The distribution of the liquid within the flask has been modelled by the intersection between the rotational hyperboloid of the liquid and the inner wall of the shaking flask. This model allows for the calculation of the specific exchange area (a), the mass transfer coefficient (k(L)) and the maximum oxygen transfer capacity (OTR(max)) for given operating conditions and requires no fitting parameters. The model agrees well with the experimental results. It was furthermore shown that the liquid film on the flask wall contributes significantly to the specific mass transfer area (a) and to the oxygen transfer rate (OTR).  相似文献   

16.
One of the mass transfer resistances for the gas exchange of shaking flasks is the sterile plug. The gas exchange through the sterile plug is described by an extended model of Henzler and Schedel [Bioprocess Eng. 7 (1991) 123]. Based on this model, a new method was developed to obtain the mass transfer resistance of various sterile closures. It consists of measuring the water evaporation rate of the shaking flask and is therefore very easily applied. Sterile plugs made of cotton, wrapped paper, urethane foam and fibreglass and caps made out of aluminium and silicone have been examined. Instead of the oxygen transfer coefficient (k(O(2))), which is commonly found in the literature, the carbon dioxide diffusion coefficient (D(CO(2))) is used to describe the mass transfer resistance of the sterile plug. The investigation revealed that this resistance is mainly dependent on the neck geometry and to a lesser extent on the plug material and density. The gas exchange of aluminium-caps was not reproducible.  相似文献   

17.
Principles of oxygen consumption, oxygen transport, suspension, and mixing are discussed in the context of propagating aggregates of plant tissue in liquid suspension bioreactors. Although micropropagated plants have a relatively low biological oxygen demand (BOD), the relatively large tissue size and localization of BOD in meristematic regions will typically result in oxygen mass transfer limitations in liquid culture. In contrast to the typical focus of bioreactor design on gas–liquid mass transfer, it is shown that media-solid mass transfer limitations limit oxygen available for aerobic plant tissue respiration. Approaches to improve oxygen availability through gas supplementation and bioreactor pressurization are discussed. The influence of media components on oxygen availability are also quantified for plant culture media. Experimental studies of polystyrene beads in suspension in a 30-l air-lift and stirred bioreactors are used to illustrate design principles for circulation and mixing. Potential limitations to the use of liquid suspension culture due to plant physiological requirements are acknowledged.  相似文献   

18.
The bioprocess development cycle is a complex task that requires a complete understanding of the engineering of the process (e.g., mass transfer, mixing, CO(2) removal, process monitoring, and control) and its affect on cell biology and product quality. Despite their widespread use in bioprocess development, spinner flasks generally lack engineering characterization of critical physical parameters such as k(L)a, P/V, or mixing time. In this study, mass transfer characterization of a 250-mL spinner flask using optical patch-based sensors is presented. The results quantitatively show the effect of the impeller type, liquid filling volume, and agitation speed on the volumetric mass transfer coefficient (k(L)a) in a 250-mL spinner flask, and how they can be manipulated to match mass transfer capability at large culture devices. Thus, process understanding in spinner flasks can be improved, and these devices can be seamlessly integrated in a rational scale-up strategy from cell thawing to bench-scale bioreactors (and beyond) in biomanufacturing.  相似文献   

19.
The effect of scaleup on he production of ajmalicine by a Catharanthus roseus cell suspension culture in a selected induction medium were studied. In preliminary experiments it was observed that the culture turned brown and the production was inhibited upon transfer from a shake flask to a stirred bioreactor with forced aeration. Two factors were recognized as the potential origin of the differences between shake flask and bioreactor cultures: gas composition and mechanical shear forces. These factors were studied separately.By recirculating a large part of the exhaust gas, a comparable gas regime was obtained in a bioreactor as occurred in a shake flask cultures. This resulted in the absence of browning and a similar pattern of ajmalicine production as observed in shake flasks. The effect of shear forces could not be demonstrated. However, the experiments showed that the culture may be very sensitive to liquid phase concentrations of gaseous compounds. The effects of k(L)a, aeration rate, CO(2) production rate, and influent gas phase CO(2) concentration on the liquid phase CO(2) concentration are discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
The enormous versatility of plants has continued to provide the impetus for the development of plant tissue culture as a commercial production strategy for secondary metabolites. Unfortunately problems with slow growth rates and low products yields, which are generally non-growth associated and intracellular, have made plant cell culture-based processes, with a few exceptions, economically unrealistic. Recent developments in reactor design and control, elicitor technology, molecular biology, and consumer demand for natural products, are fuelling a renaissance in plant cell culture as a production strategy. In this review we address the engineering consequences of the unique characteristics of plant cells on the scale-up of plant cell culture.Abbreviations a gas-liquid interfacial area per volume - C dissolved oxygen concentration - C* liquid phase oxygen concentration in equilibrium with the partial pressure of oxygen in the bulk gas phase - KL overall mass transfer coefficient - kL liquid film mass transfer coefficient - mO2 cell maintenance coefficient for oxygen - OTR oxygen transfer rate - OUR oxygen uptake rate - pO2 partial pressure of oxygen - STR stirred-tank reactor - v.v.m. volume of gas fed per unit operating volume of reactor per minute - X biomass concentration - Yx/O2 biomass yield coefficient for oxygen - specific growth rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号