首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mapping of the ribosomal RNA genes on spinach chloroplast DNA.   总被引:22,自引:12,他引:10       下载免费PDF全文
Spinach chloroplast ribosomal RNAs have been hybridized to restriction endonuclease fragments of spinach chloroplast DNA. All three RNA species (23S, 16S and 5S) hybridized to a single large fragment when the DNA was digested with either Sall or Pstl. Hybridization of 23S RNA to fragments produced by Smal yielded two radioactive bands which corresponded to the bi-molar 2.5 X 10(6) and 1.15 X 10(6) Mr fragments. 16S RNA also hybridized to two, bi-molar Smal fragments (3.4 X 10(6) and 2.5 X 10(6) Mr) and 5S RNA hybridized to the 1.15 X 10(6) Mr bi-molar Smal fragment. The 23S RNA and 16S RNA cistrons were each also shown to contain a single EcoRI site. From the data it was possible to conclude that the ribosomal RNA genes are located on the inverted repeat region of the spinach chloroplast DNA restriction map [1,2], that the sequence of the cistrons is 16S - 23S - 5S and that the size of the spacer between the 16S and 23S RNA cistrons is approximately 0.90 X 10(6) Mr.  相似文献   

2.
The ribonuclease alpha-sarcin exclusively cleaves the phosphodiester bond after G2661 in the 23S rRNA within 50S subunits, thus inactivating the ribosomes. The resulting alpha-fragment is 243 nucleotides long and contains the 3'-end of the 23S rRNA. The specificity is changed dramatically if isolated 23S rRNA is used as substrate. We have shown previously that 23S rRNA is digested completely except for two fragments, one of which is identical to the alpha-fragment. Here we show that the other fragment comprises the 5'-end of 23S rRNA and contains 385 nucleotides. A similar fragment was obtained when isolated 23S rRNA was digested with RNase A (specific for pyrimidines in single strands). It appears that the 5'-domain (equivalent to 5.8S rRNA of eukaryotic ribosomes) as well as the 3'-domain (equivalent to 4.5S rRNA of chloroplast ribosomes) have a compact and defined tertiary structure in isolated 23S rRNA in contrast to the rRNA region in between. Thus, alpha-sarcin is a convenient tool for detecting compact domains in isolated RNA.  相似文献   

3.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

4.
我们采用植物叶与热缓冲液、苯酚直接混合(约65℃)匀浆,离心抽提和乙醇沉淀后,得到植物叶总RNA。经聚丙烯酰胺凝胶电泳分离、纯化,即可得到叶绿体4.5S rRNA,此法不仅操作简单,而且得率高。 同时,经过对同一植物的不同组织或不同细胞组分,如根、细胞质、叶绿体和叶绿体核糖体小分子RNA的提取与鉴定,以简便的方法证明了4.5S rRNA是叶绿体核糖体成份,也证明了我们所采用的提取、纯化4.5SrRNA方法的可靠性。  相似文献   

5.
Cloning and characterization of 4.5S and 5S RNA genes in tobacco chloroplasts   总被引:10,自引:0,他引:10  
F Takaiwa  M Sugiura 《Gene》1980,10(2):95-103
Tobacco chloroplast 4.5S and 5S RNAs were shown to hybridize with a 0.9 . 10(6) dalton EcoRI fragment of tobacco chloroplast DNA. Recombinant plasmids were constructed from fragments produced by partial digestion of the chloroplast DNA with EcoRI and the pMB9 plasmid as a vector. Five recombinants containing the 4.5S and 5S genes were selected by the colony hybridization technique. One of these plasmids contained also the 16S and 23S RNA genes and was mapped using several restriction endonucleases as well as DNA-RNA hybridization. The order of rRNA genes is 16S-23S-4.5S-5S and the four rRNA genes are coded for by the same DNA strand.  相似文献   

6.
7.
With the use of spinach chloroplast RNAs as probes, we have mapped the rRNA genes and a number of protein genes on the chloroplast DNA (cpDNA) of the duckweed Spirodela oligorhiz. For a more precise mapping of these genes we had to extend the previously determined [14] restriction endonuclease map of the duckweed cpDNA with the cleavage sites for the restriction endonucleases Sma I and Bgl I. The physical map indicates that duckweed cpDNA contains two inverted repeat regions (18 Md) separated by two single copy regions with a size of 19 Md and 67 Md, respectively.By hybridization with spinach chloroplast rRNAs it could be shown that each of the two repeat units contains one set of rRNA genes in the order: 16S rRNA gene — spacer — 23S rRNA gene — 5S rRNA gene.A spinach chloroplast mRNA preparation (14S RNA), which is predominantly translated into a 32 Kilodalton (Kd) protein [9], hybridized strongly to a DNA fragment in the large single copy region, immediately outside one of the inverted repeats. With another mRNA preparation (18S), which mainly directs the in vitro synthesis of a 55 Kd protein [9], hybridization was observed with two DNA regions, located between 211° and 233° and between 137° and 170°, respectively. Finally, with a spinach chloroplast genomic probe for the large subunit of ribulose 1,5-bisphosphate carboxylase [17], hybridization was found with a DNA fragment located between 137° and 158° on the map.  相似文献   

8.
A species of low-molecular-weight ribosomal RNA, referred to as '4.5S rRNA', was found in addition to 5S rRNA in the large subunit of chloroplast ribosomes of a wide range of flowering plants. It was shown by sequence analysis that several variants of this RNA may occur in a plant. Furthermore, although in most flowering plants the predominant variant contains about 100 nucleotides, in the broad bean it has less than 80. It seems, therefore, to be much more diverse in size and sequence than the other ribosomal RNA species. Like 5S rRNA , it does not contain modified nucleotides and it is also unusual in having an unphosphorylated 5'-end. It is apparently neither a homologue of cytosol 5.8S rRNA nor a fragment of 23S rRNA.  相似文献   

9.
Summary The 4S RNA of cyanelles from Cyanophora paradoxa strain LB 555 UTEX was fractionated by two-dimensional gel electrophoresis. Individual tRNA species were identified by aminoacylation, labeled in vitro and hybridized to restriction endonuclease fragments of cyanelle DNA. Hybridization experiments, using individual tRNA species, have revealed the location of two tRNA genes, coding for tRNAAla and tRNAIle, in each of the two spacer segments separating the 16S and 23S rRNA genes on the two inverted repeats (10 kbp each) and three tRNA genes in the small single-copy region (17 kbp) separating the two inverted repeats. A minimum of 14 tRNA genes in the large single-copy region (88.5 kbp) has also been found.Heterologous hybridization studies, using cyanelle tRNAs and chloroplast DNA from spinach, broad bean, or maize, indicate a high degree of homology between some tRNAs from cyanelles and chloroplasts.Although cyanelles are often condisered as having evolved from endosymbiotic cyanobacteria, the organization of tRNA genes on cyanelle DNA and the results of heterologous hybridization studies show that cyanelles are related to higher plant chloroplasts.  相似文献   

10.
The termini of rRNA processing intermediates and of mature rRNA species encoded by the 3' terminal region of 23S rDNA, by 4.5S rDNA, by the 5' terminal region of 5S rDNA and by the 23S/4.5S/5S intergenic regions from Zea mays chloroplast DNA were determined by using total RNA isolated from maize chloroplasts and 32P-labelled rDNA restriction fragments of these regions for nuclease S1 and primer extension mapping. Several processing sites detectable by both 3' and 5' terminally labelled probes could be identified and correlated to the secondary structure for the 23S/4.5S intergenic region. The complete 4.5S/5S intergenic region can be reverse transcribed and a common processing site for maturation of 4.5S and 5S rRNA close to the 3' end of 4.5S rRNA was detected. It is therefore concluded that 23S, 4.5S and 5S rRNA are cotranscribed.  相似文献   

11.
A novel variety of 4.5 S RNA from Codium fragile chloroplasts   总被引:2,自引:0,他引:2  
An unusual new chloroplast RNA has been isolated and sequenced in the siphonous green alga, Codium fragile. This RNA is 94 nucleotides in length, has an unusually high A + U content (73%), contains no modified residues, and is as abundant as a single chloroplast tRNA species. Although this RNA is 4.5 S in size, it bears little sequence homology to the widely found and highly conserved 4.5 S RNAs present in the chloroplasts of higher plants. Nevertheless, this RNA may indeed by analogous to the higher plant 4.5 S RNAs, since the Codium 4.5 S RNA has the potential to form a secondary structure which in many respects is remarkably similar to that of known chloroplast 4.5 S RNAs, and hybridization data strongly suggests that the 4.5 S RNA is part of the ribosomal RNA operon, as is the case in higher plant chloroplasts.  相似文献   

12.
Spinacia oleracia cholorplast 5S ribosomal RNA was end-labeled with [32P] and the complete nucleotide sequence was determined. The sequence is: pUAUUCUGGUGUCCUAGGCGUAGAGGAACCACACCAAUCCAUCCCGAACUUGGUGGUUAAACUCUACUGCGGUGACGAU ACUGUAGGGGAGGUCCUGCGGAAAAAUAGCUCGACGCCAGGAUGOH. This sequence can be fitted to the secondary structural model proposed for prokaryotic 5S ribosomal RNAs by Fox and Woese (1). However, the lengths of several single- and double-stranded regions differ from those common to prokaryotes. The spinach chloroplast 5S ribosomal RNA is homologous to the 5S ribosomal RNA of Lemna chloroplasts with the exception that the spinach RNA is longer by one nucleotide at the 3' end and has a purine base substitution at position 119. The sequence of spinach chloroplast 5S RNA is identical to the chloroplast 5S ribosomal RNA gene of tobacco. Thus the structures of the chloroplast 5S ribosomal RNAs from some of the higher plants appear to be almost totally conserved. This does not appear to be the case for the higher plant cytoplasmic 5S ribosomal RNAs.  相似文献   

13.
14.
15.
Chi W  He B  Mao J  Li Q  Ma J  Ji D  Zou M  Zhang L 《Plant physiology》2012,158(2):693-707
The chloroplast ribosome is a large and dynamic ribonucleoprotein machine that is composed of the 30S and 50S subunits. Although the components of the chloroplast ribosome have been identified in the last decade, the molecular mechanisms driving chloroplast ribosome biogenesis remain largely elusive. Here, we show that RNA helicase 22 (RH22), a putative DEAD RNA helicase, is involved in chloroplast ribosome assembly in Arabidopsis (Arabidopsis thaliana). A loss of RH22 was lethal, whereas a knockdown of RH22 expression resulted in virescent seedlings with clear defects in chloroplast ribosomal RNA (rRNA) accumulation. The precursors of 23S and 4.5S, but not 16S, rRNA accumulated in rh22 mutants. Further analysis showed that RH22 was associated with the precursors of 50S ribosomal subunits. These results suggest that RH22 may function in the assembly of 50S ribosomal subunits in chloroplasts. In addition, RH22 interacted with the 50S ribosomal protein RPL24 through yeast two-hybrid and pull-down assays, and it was also bound to a small 23S rRNA fragment encompassing RPL24-binding sites. This action of RH22 may be similar to, but distinct from, that of SrmB, a DEAD RNA helicase that is involved in the ribosomal assembly in Escherichia coli, which suggests that DEAD RNA helicases and rRNA structures may have coevolved with respect to ribosomal assembly and function.  相似文献   

16.
14-S RNA was purified from spinach chloroplasts. It has a molecular weight of 0.43 . 10(6) and the following nucleotide composition: 20% CMP, 23.9% AMP, 24.2% GMP and 31.9% UMP. The accumulation of 14-S RNA in chloroplasts of cotyledons of dark-grown plants is stimulated by light. Conditions are described for the isolation of 14-S RNA in the absence of appreciable fragmentation of chloroplast 23-S rRNA and the evidence that it represents a distinct type of chloroplast RNA is discussed. Translation of 14-S RNA in a protein synthesising system from Escherichia coli gives rise to two polypeptides with molecular weights of 13 200 and 12 600 and the possible role of 14-S RNA as a chloroplast messenger is discussed.  相似文献   

17.
We have examined the accessibility to diethylpyrocarbonate of spinach chloroplast 4.5S ribosomal RNA when free and when it is part of the ribosomal structure. The modifications in free 4.5S RNA were found mostly in single-stranded regions of the secondary structure model proposed in our previous paper (Kumagai, I. et al. (1982) J.B.C. 257, 12924-28): adenines at positions 17, 19, 33, 36, 54, 55, 60, 64, 68, 72, 77, 86 and 87 were identified as the reactive residues. On the other hand, in 4.5S RNA in 70S ribosomes or 50S subunits, adenine 33 was exclusively modified, and its reactivity was much higher than in free 4.5S RNA. This highly accessible A33 of spinach 4.5S RNA is located within a characteristic seven nucleotide sequence, which is found in the 4.5S rRNAs from spinach, tobacco and a fern but deleted in 4.5S RNAs from maize and wheat.  相似文献   

18.
Illuminated suspensions of chloroplasts isolated from young spinach leaves show incorporation of [3H]uridine into several species of RNA. One such RNA species of Mr 2.7 x 10(6) shows sequence homology with both the chloroplast 23-S rRNA (Mr = 1.05 x 10(6)) and 16-S rRNA (Mr = 0.56 x 10(6)), as judged by DNA/RNA competition hybridization. Leaves labelled in vivo with [32P]orthophosphate in the presence of chloramphenicol accumulate labelled RNAs of Mr 1.28 x 10(6), 0.71/0.75 x 10(6) and 0.47 x 10(6). The 1.28 x 10(6)-Mr RNA shows 80.5% sequence homology with the 1.05 x 10(6)-Mr rRNA and the 0.71/0.75 x 10(6)-Mr RNA mixture shows 76% sequence homology with the 0.56 x 10(6)-Mr rRNA. We conclude that the pathway of rRNA maturation in spinach chloroplasts is similar to that of Escherichia coli.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号