首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Malaria parasites increase their host erythrocyte’s permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC) mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel’s structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing.  相似文献   

2.
Malaria parasites induce changes in the permeability of the infected erythrocyte membrane to numerous solutes, including toxic compounds. In Plasmodium falciparum, this is mainly mediated by PSAC, a broad‐selectivity channel that requires the product of parasite clag3 genes for its activity. The two paralogous clag3 genes, clag3.1 and clag3.2, can be silenced by epigenetic mechanisms and show mutually exclusive expression. Here we show that resistance to the antibiotic blasticidin S (BSD) is associated with switches in the expression of these genes that result in altered solute uptake. Low concentrations of the drug selected parasites that switched from clag3.2 to clag3.1 expression, implying that expression of one or the other clag3 gene confers different transport efficiency to PSAC for some solutes. Selection with higher BSD concentrations resulted in simultaneous silencing of both clag3 genes, which severely compromises PSAC formation as demonstrated by blocked uptake of other PSAC substrates. Changes in the expression of clag3 genes were not accompanied by large genetic rearrangements or mutations at the clag3 loci or elsewhere in the genome. These resultsdemonstrate that malaria parasites can become resistant to toxic compounds such as drugs by epigenetic switches in the expression of genes necessary for the formation of solute channels.  相似文献   

3.
The plasmodial surface anion channel (PSAC) is an unusual ion channel induced on the human red blood cell membrane after infection with the malaria parasite, Plasmodium falciparum. Because PSAC is permeant to small metabolic precursors essential for parasite growth and is present on red blood cells infected with geographically divergent parasite isolates, it may be an ideal target for future antimalarial development. Here, we used chemically induced mutagenesis and known PSAC antagonists that inhibit in vitro parasite growth to examine whether resistance mutations in PSAC can be readily induced. Stable mutants resistant to phloridzin were generated and selected within 3 weeks after treatment with 1-methyl-3-nitro-1-nitrosoguanidine. These mutants were evaluated with osmotic lysis and electrophysiological transport assays, which indicate that PSAC inhibition by phloridzin is complex with at least two different modes of inhibition. Mutants resistant to the growth inhibitory effects of phloridzin expressed PSAC activity indistinguishable from that on sensitive parasites, indicating selection of resistance via mutations in one or more other parasite targets. Failure to induce mutations in PSAC activity is consistent with a highly constrained channel protein less susceptible to resistance mutations; whether this protein is parasite- or host-encoded remains to be determined.  相似文献   

4.
Lisk G  Desai SA 《Eukaryotic cell》2005,4(12):2153-2159
The plasmodial surface anion channel (PSAC), a novel ion channel induced on human erythrocytes infected with Plasmodium falciparum, mediates increased permeability to nutrients and presumably supports intracellular parasite growth. Isotope flux studies indicate that other malaria parasites also increase the permeability of their host erythrocytes, but the precise mechanisms are unknown. Channels similar to PSAC or alternative mechanisms, such as the upregulation of endogenous host transporters, might fulfill parasite nutrient demands. Here we evaluated these possibilities with rhesus monkey erythrocytes infected with Plasmodium knowlesi, a parasite phylogenetically distant from P. falciparum. Tracer flux and osmotic fragility studies revealed dramatically increased permeabilities paralleling changes seen after P. falciparum infection. Patch-clamp of P. knowlesi-infected rhesus erythrocytes revealed an anion channel with striking similarities to PSAC: its conductance, voltage-dependent gating, pharmacology, selectivity, and copy number per infected cell were nearly identical. Our findings implicate a family of unusual anion channels highly conserved on erythrocytes infected with various malaria parasites. Together with PSAC's exposed location on the host cell surface and its central role in transport changes after infection, this conservation supports development of antimalarial drugs against the PSAC family.  相似文献   

5.
Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium. The most virulent form of the disease is caused by Plasmodium falciparum which infects hundreds of millions of people and is responsible for the deaths of 1-2 million individuals each year. An essential part of the parasitic process is the remodeling of the red blood cell membrane and its protein constituents to permit a higher flux of nutrients and waste products into or away from the intracellular parasite. Much of this increased permeability is due to a single type of broad specificity channel variously called the new permeation pathway (NPP), the nutrient channel, and the Plasmodial surface anion channel (PSAC). This channel is permeable to a range of low molecular weight solutes both charged and uncharged, with a strong preference for anions. Drugs such as furosemide that are known to block anion-selective channels inhibit PSAC. In this study, we have investigated a dye known as benzothiocarboxypurine, BCP, which had been studied as a possible diagnostic aid given its selective uptake by P. falciparum infected red cells. We found that the dye enters parasitized red cells via the furosemide-inhibitable PSAC, forms a brightly fluorescent complex with parasite nucleic acids, and is selectively toxic to infected cells. Our study describes an antimalarial agent that exploits the altered permeability of Plasmodium-infected red cells as a means to killing the parasite and highlights a chemical reagent that may prove useful in high throughput screening of compounds for inhibitors of the channel.  相似文献   

6.
Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.  相似文献   

7.
Erythrocytes infected with malaria parasites have increased permeability to ions and various nutrient solutes, mediated by a parasite ion channel known as the plasmodial surface anion channel (PSAC). The parasite clag3 gene family encodes PSAC activity, but there may also be additional unidentified components of this channel. Consistent with a lack of clag3 homology to genes of other ion channels, PSAC has a number of unusual functional properties. Here, we report that PSAC exhibits an unusual form of voltage-dependent inactivation. Inactivation was readily detected in the whole-cell patch-clamp configuration after steps to negative membrane potentials. The fraction of current that inactivates, its kinetics, and the rate of recovery were all voltage-dependent, though with a modest effective valence (0.7±0.1 elementary charges). These properties were not affected by solution composition or charge carrier, suggesting inactivation intrinsic to the channel protein. Intriguingly, inactivation was absent in cell-attached recordings and took several minutes to appear after obtaining the whole-cell configuration, suggesting interactions with soluble cytosolic components. Inactivation could also be largely abolished by application of intracellular, but not extracellular protease. The findings implicate inactivation via a charged cytoplasmic channel domain. This domain may be tethered to one or more soluble intracellular components under physiological conditions.  相似文献   

8.
Development of malaria parasites within vertebrate erythrocytes requires nutrient uptake at the host cell membrane. The plasmodial surface anion channel (PSAC) mediates this transport and is an antimalarial target, but its molecular basis is unknown. We report a parasite gene family responsible for PSAC activity. We used high-throughput screening for nutrient uptake inhibitors to identify a compound highly specific for channels from the Dd2 line of the human pathogen P. falciparum. Inheritance of this compound's affinity in a Dd2 × HB3 genetic cross maps to a single parasite locus on chromosome 3. DNA transfection and in vitro selections indicate that PSAC-inhibitor interactions are encoded by two clag3 genes previously assumed to function in cytoadherence. These genes are conserved in plasmodia, exhibit expression switching, and encode an integral protein on the host membrane, as predicted by functional studies. This protein increases host cell permeability to diverse solutes.  相似文献   

9.
Drug resistance poses a significant threat to ongoing malaria control efforts. Coupled with lack of a malaria vaccine, there is an urgent need for the development of new antimalarials with novel mechanisms of action and low susceptibility to parasite drug resistance. Protein Kinase A (PKA) has been implicated as a critical regulator of pathogenesis in malaria. Therefore, we sought to investigate the effects of disrupted PKA signaling as a possible strategy for inhibition of parasite replication. Host PKA activity is partly regulated by a class of proteins called A Kinase Anchoring Proteins (AKAPs), and interaction between HsPKA and AKAP can be inhibited by the stapled peptide Stapled AKAP Disruptor 2 (STAD-2). STAD-2 was tested for permeability to and activity against Plasmodium falciparum blood stage parasites in vitro. The compound was selectively permeable only to infected red blood cells (iRBC) and demonstrated rapid antiplasmodial activity, possibly via iRBC lysis (IC50 ≈ 1 μM). STAD-2 localized within the parasite almost immediately post-treatment but showed no evidence of direct association with PKA, indicating that STAD-2 acts via a PKA-independent mechanism. Furosemide-insensitive parasite permeability pathways in the iRBC were largely responsible for uptake of STAD-2. Further, peptide import was highly specific to STAD-2 as evidenced by low permeability of control stapled peptides. Selective uptake and antiplasmodial activity of STAD-2 provides important groundwork for the development of stapled peptides as potential antimalarials. Such peptides may also offer an alternative strategy for studying protein-protein interactions critical to parasite development and pathogenesis.  相似文献   

10.
Antiretroviral protease inhibitors significantly potentiated the sensitivity of chloroquine-resistant malaria parasites to the antimalarial drug in vitro and in vivo. Ritonavir was found to be potent in potentiating CQ antimalarial activities in both -resistant and -sensitive lines. The mechanism by which the APIs modulate the CQ resistance in malaria parasites was further investigated. CQ-resistant parasites showed increased intracellular glutathione levels in comparison with the CQ-sensitive parasites. Treatment with APIs significantly reduced the levels of GSH and glutathione S-transferase activities in CQ-resistant parasites. Ritonavir also decreased glutathione reductase activities and glutathione peroxidase activities in CQ-resistant parasite line. Taken together, these results demonstrate that parasite GSH and GST may play an important role in CQ resistance and APIs are able to enhance the sensitivity of CQ-resistant malaria parasite to the drug by influencing the levels of GSH and the activities of the related enzymes.  相似文献   

11.
Erythrocytes infected with malaria parasites have increased permeability to diverse organic and inorganic solutes. While these permeability changes have been known for decades, the molecular basis of transport was unknown and intensively debated. CLAG3, a parasite protein previously thought to function in cytoadherence, has recently been implicated in formation of the plasmodial surface anion channel (PSAC), an unusual small conductance ion channel that mediates uptake of most solutes. Consistent with transport studies, the clag genes are conserved in all plasmodia but are absent from other genera. The encoded protein is integral to the host membrane, as also predicted by electrophysiology. An important question is whether functional channels are formed by CLAG3 alone or through interactions with other proteins. In either case, gene identification should advance our understanding of parasite biology and may lead to new therapeutics.  相似文献   

12.
The plasmodial surface anion channel (PSAC) is a voltage-dependent ion channel on erythrocytes infected with malaria parasites. To fulfill its presumed function in parasite nutrient acquisition, PSAC is permeant to a broad range of charged and uncharged solutes; it nevertheless excludes Na+ as required to maintain erythrocyte osmotic stability in plasma. Another surprising property of PSAC is its small single-channel conductance (<3 pS in isotonic Cl?) in spite of broad permeability to bulky solutes. While exploring the mechanisms underlying these properties, we recently identified interactions between permeating solutes and PSAC inhibitors that suggest the channel has more than one route for passage of solutes. Here, we explored this possibility with 22 structurally diverse solutes and found that each could be classified into one of two categories based on effects on inhibitor affinity, the temperature dependence of these effects and a clear pattern of behavior in permeant solute mixtures. The clear separation of these solutes into two discrete categories suggests two distinct mechanisms of transport through this channel. In contrast to most other broad-permeability channels, selectivity in PSAC appears to be complex and cannot be adequately explained by simple models that invoke sieving through rigid, noninteracting pores.  相似文献   

13.
Lisk G  Kang M  Cohn JV  Desai SA 《Eukaryotic cell》2006,5(11):1882-1893
The plasmodial surface anion channel (PSAC), induced on human erythrocytes by the malaria parasite Plasmodium falciparum, is an important target for antimalarial drug development because it may contribute to parasite nutrient acquisition. However, known antagonists of this channel are quite nonspecific, inhibiting many other channels and carriers. This lack of specificity not only complicates drug development but also raises doubts about the exact role of PSAC in the well-known parasite-induced permeability changes. We recently identified a family of new PSAC antagonists structurally related to dantrolene, an antagonist of muscle Ca++ release channels. Here, we explored the mechanism of dantrolene's actions on parasite-induced permeability changes. We found that dantrolene inhibits the increased permeabilities of sorbitol, two amino acids, an organic cation, and hypoxanthine, suggesting a common pathway shared by these diverse solutes. It also produced parallel reductions in PSAC single-channel and whole-cell Cl- currents. In contrast to its effect on parasite-induced permeabilities, dantrolene had no measurable effect on five other classes of anion channels, allaying concerns of poor specificity inherent to other known antagonists. Our studies indicate that dantrolene binds PSAC at an extracellular site distinct from the pore, where it inhibits the conformational changes required for channel gating. Its affinity for this site depends on ionic strength, implicating electrostatic interactions in dantrolene binding. In addition to the potential therapeutic applications of its derivatives, dantrolene's specificity and its defined mechanism of action on PSAC make it a useful tool for transport studies of infected erythrocytes.  相似文献   

14.
Human erythrocytes infected with Plasmodium falciparum have markedly increased permeability to diverse solutes, many of which may be mediated by an unusual small conductance ion channel, the plasmodial surface anion channel (PSAC). Because these increases may be essential for parasite survival in the bloodstream, an important question is whether other intraerythrocytic parasites induce similar ion channels. Here, we examined this question using human erythrocytes infected with Babesia divergens, a distantly related apicomplexan parasite that can cause severe disease in immunocompromised humans. Osmotic lysis experiments after enrichment of infected erythrocytes with a new method revealed that these parasites also increase host permeability to various organic solutes. These permeability changes differed significantly from those induced by P. falciparum in transport rates, selectivity profiles and temperature dependence. Cell-attached and whole-cell patch-clamp experiments confirmed and extended these differences because neither PSAC-like channels nor significant increases in whole-cell anion conductance were seen after B. divergens infection. While both babesia and plasmodia increase host erythrocyte permeability to a diverse collection of organic solutes, they utilize fundamentally different mechanisms.  相似文献   

15.
Malaria parasites export many proteins into their host erythrocytes and increase membrane permeability to diverse solutes. Although most solutes use a broad‐selectivity channel known as the plasmodial surface anion channel, increased Ca++ uptake is mediated by a distinct, poorly characterised mechanism that appears to be essential for the intracellular parasite. Here, we examined infected cell Ca++ uptake with a kinetic fluorescence assay and the virulent human pathogen, Plasmodium falciparum. Cell surface labelling with N‐hydroxysulfosuccinimide esters revealed differing effects on transport into infected and uninfected cells, indicating that Ca++ uptake at the infected cell surface is mediated by new or altered proteins at the host membrane. Conditional knockdown of PTEX, a translocon for export of parasite proteins into the host cell, significantly reduced infected cell Ca++ permeability, suggesting involvement of parasite‐encoded proteins trafficked to the host membrane. A high‐throughput chemical screen identified the first Ca++ transport inhibitors active against Plasmodium‐infected cells. These novel chemical scaffolds inhibit both uptake and parasite growth; improved in vitro potency at reduced free [Ca++] is consistent with parasite killing specifically via action on one or more Ca++ transporters. These inhibitors should provide mechanistic insights into malaria parasite Ca++ transport and may be starting points for new antimalarial drugs.  相似文献   

16.
17.
The myxozoan parasite Ceratomyxa shasta infects salmonids causing ceratomyxosis, a disease elicited by proliferation of the parasite in the intestine. This parasite is endemic to the Pacific Northwest of North America and salmon and trout strains from endemic river basins show increased resistance to the parasite. It has been suggested that these resistant fish (i) exclude the parasite at the site of invasion and/or (ii) prevent establishment in the intestine. Using parasites pre-labeled with a fluorescent stain, carboxyfluorescein succinimidyl diacetate (CFSE), the gills were identified as the site of attachment of C. shasta in a susceptible fish strain. In situ hybridization (ISH) of histological sections was then used to describe the invasion of the parasites in the gill filaments. To investigate differences in the progress of infection between resistant and susceptible fish, a C. shasta-susceptible strain of rainbow trout (Oncorhynchus mykiss) and a C. shasta-resistant strain of Chinook salmon (Oncorhynchus tshawytscha) were sampled at consecutive time points following exposure at an endemic site. Using ISH in both species, the parasite was observed to migrate from the gill epithelium into the gill blood vessels where replication and release of parasite stages occurred. Quantitative PCR verified entry of the parasite into the blood. Parasite levels in blood increased 4 days p.i. and remained at a consistent level until the second week when parasite abundance increased further and coincided with host mortality. The timing of parasite replication and migration to the intestine were similar for both fish species. The field exposure dose was unexpectedly high and apparently overwhelmed the Chinook salmon’s defenses, as no evidence of resistance to parasite penetration into the gills or prevention of parasite establishment in the intestine was observed.  相似文献   

18.
Establishment of infection by Leishmania depends on the transformation of the invading metacyclic promastigotes into the obligatory intracellular amastigotes, and their subsequent survival in the macrophage phagolysosome, which is low in magnesium. We show that two Leishmania major proteins designated MGT1 and MGT2, which play a critical role in these processes, belong to the two-transmembrane domain (2-TM-GxN) cation transporter family and share homology with the major bacterial magnesium transporter CorA. Although both are present in the endoplasmic reticulum throughout the life cycle of the parasite, MGT1 is more highly expressed in the infectious metacyclic parasites, while MGT2 is enriched in the immature procyclic stages. The two proteins, although predicted to be structurally similar, have features that suggest different regulatory or gating mechanisms. The two proteins may also be functionally distinct, since only MGT1 complements an Escherichia coliΔCorA mutant. In addition, deletion of one mgt1 allele from L. major led to increased virulence, while deletion of one allele of mgt2 resulted in slower growth and total loss of virulence in vitro and in vivo. This loss of virulence may be due to an impaired transformation of the parasites into amastigotes. Deletion of both mgt1 alleles in the hemizygous MGT2 knockdown parasites reversed the growth defect and partially restored virulence. Our data indicate that the MGTs play a critical role in parasite growth, development and virulence.  相似文献   

19.
Chloroquine‐resistant malaria parasites (Plasmodium falciparum) show an increased leak of H+ ions from their internal digestive vacuole in the presence of chloroquine. This phenomenon has been attributed to the transport of chloroquine, together with H+, out of the digestive vacuole (and hence away from its site of action) via a mutant form of the parasite's chloroquine resistance transporter (PfCRT). Here, using transfectant parasite lines, we show that a range of other antimalarial drugs, as well as various ‘chloroquine resistance reversers’ induce an increased leak of H+ from the digestive vacuole of parasites expressing mutant PfCRT, consistent with these compounds being substrates for mutant forms, but not the wild‐type form, of PfCRT. For some compounds there were significant differences observed between parasites having the African/Asian Dd2 form of PfCRT and those with the South American 7G8 form of PfCRT, consistent with there being differences in the transport properties of the two mutant proteins. The finding that chloroquine resistance reversers are substrates for mutant PfCRT has implications for the mechanism of action of this class of compound.  相似文献   

20.
Human erythrocytes infected with the malaria parasite Plasmodium falciparum have increased permeabilities to many solutes. The plasmodial surface anion channel (PSAC) may mediate these changes. Despite good understanding of the biochemical and biophysical properties, the genetic basis of PSAC activity remains unknown. Functional polymorphisms in laboratory isolates and two mutants generated by in vitro selection implicate a parasite-encoded channel, although parasite-induced modifications of endogenous channels have not been formally excluded. Here, we identified stable differences in furosemide efficacy against PSAC activity induced by HB3 and 3D7A parasites. This difference was apparent in both single PSAC patch-clamp recordings and in sorbitol-mediated osmotic lysis measurements, confirming that Cl- and sorbitol are transported by a single-channel type. Examination of 19 progeny from a genetic cross between HB3 and 3D7A revealed complex inheritance with some cloned progeny exhibiting furosemide affinities outside the range of parental values. Isolates generated by selfing of the 3D7A clone also exhibited altered furosemide affinities, implicating changes in one or more alleles during meiosis or passage through a primate host. PSAC may be encoded by multiple parasite genes (e.g. a multi-gene family or multiple genes that encode distinct channel subunits) or a single polymorphic gene under strong selective pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号