首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The subcellular distribution of calnexin is mediated by PACS-2   总被引:1,自引:0,他引:1       下载免费PDF全文
Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.  相似文献   

3.
Oxidation and folding of secretory proteins in the endoplasmic reticulum (ER) depends on the presence of chaperones and oxidoreductases. Two of the oxidoreductases present in the ER of mammalian cells are protein disulfide isomerase (PDI) and ERp57. In this study, we investigated the influence of ERp57 on the in vitro reoxidation and refolding of an antibody Fab fragment. Our results show that ERp57 shares functional properties with PDI and that both are clearly different from other oxidoreductases. The reactivation of the denatured and reduced Fab fragment was enhanced significantly in the presence of ERp57 with kinetics and redox dependence of the reactivation reaction comparable to those obtained for PDI. These properties were not influenced by the presence of calnexin. Furthermore, whereas PDI cooperates with the immunoglobulin heavy chain binding protein (BiP), no synergistic effect could be observed for BiP and ERp57. These results indicate that the cooperation of the two oxidoreductases with different partner proteins may explain their different roles in the folding of proteins in the ER.  相似文献   

4.
The mitochondria-associated membrane (MAM) is a domain of the endoplasmic reticulum (ER) that mediates the exchange of ions, lipids and metabolites between the ER and mitochondria. ER chaperones and oxidoreductases are critical components of the MAM. However, the localization motifs and mechanisms for most MAM proteins have remained elusive. Using two highly related ER oxidoreductases as a model system, we now show that palmitoylation enriches ER-localized proteins on the MAM. We demonstrate that palmitoylation of cysteine residue(s) adjacent to the membrane-spanning domain promotes MAM enrichment of the transmembrane thioredoxin family protein TMX. In addition to TMX, our results also show that calnexin shuttles between the rough ER and the MAM depending on its palmitoylation status. Mutation of the TMX and calnexin palmitoylation sites and chemical interference with palmitoylation disrupt their MAM enrichment. Since ER-localized heme oxygenase-1, but not cytosolic GRP75 require palmitoylation to reside on the MAM, our findings identify palmitoylation as key for MAM enrichment of ER membrane proteins.  相似文献   

5.
Members of the protein-disulfide isomerase superfamily catalyze the formation of intra- and intermolecular disulfide bonds, a rate-limiting step of protein folding in the endoplasmic reticulum (ER). Here we compared maturation of one obligate and two facultative calnexin substrates in cells with and without ERp57, the calnexin-associated, glycoprotein-specific oxidoreductase. ERp57 deletion did not prevent the formation of disulfide bonds during co-translational translocation of nascent glycopolypeptides in the ER. It affected, however, the post-translational phases of oxidative influenza virus hemagglutinin (HA) folding, resulting in significant loss of folding efficiency for this obligate calnexin substrate. Without ERp57, HA also showed reduced capacity to recover from an artificially induced aberrant conformation, thus revealing a crucial role of ERp57 during post-translational reshuffling to the native set of HA disulfides. ERp57 deletion did not affect maturation of the model facultative calnexin substrates E1 and p62 (and of most cellular proteins, as shown by lack of induction of ER stress). ERp72 was identified as one of the ER-resident oxidoreductases associating with the orphan ERp57 substrates to maintain their folding competence.  相似文献   

6.
The mitochondria-associated membrane (MAM) has emerged as an endoplasmic reticulum (ER) signaling hub that accommodates ER chaperones, including the lectin calnexin. At the MAM, these chaperones control ER homeostasis but also play a role in the onset of ER stress-mediated apoptosis, likely through the modulation of ER calcium signaling. These opposing roles of MAM-localized chaperones suggest the existence of mechanisms that regulate the composition and the properties of ER membrane domains. Our results now show that the GTPase Rab32 localizes to the ER and mitochondria, and we identify this protein as a regulator of MAM properties. Consistent with such a role, Rab32 modulates ER calcium handling and disrupts the specific enrichment of calnexin on the MAM, while not affecting the ER distribution of protein-disulfide isomerase and mitofusin-2. Furthermore, Rab32 determines the targeting of PKA to mitochondrial and ER membranes and through its overexpression or inactivation increases the phosphorylation of Bad and of Drp1. Through a combination of its functions as a PKA-anchoring protein and a regulator of MAM properties, the activity and expression level of Rab32 determine the speed of apoptosis onset.  相似文献   

7.
过量表达内质网小分子热激蛋白增强番茄的衣霉素抗性   总被引:4,自引:0,他引:4  
真核细胞内质网腔内未折叠蛋白的过度积累会引起内质网胁迫(ER胁迫),继而激活未折叠蛋白应答(UPR)信号途径,诱导内质网定位的分子伴侣的大量表达(如BiP和calnexin等)。本工作将CaMV35S启动子驱动的内质网小分子热激蛋白基因(ER-sHSP)导入番茄,发现ER-sHSP的过量表达提高了转基因番茄整株对衣霉素的抗性。衣霉素处理使未转基因番茄中BiP和calnexin基因的表达迅速升高,转基因番茄中这两个基因的表达也有增加,但表达强度明显低于未转基因番茄。说明ER-sHSP能够减轻ER胁迫,并可能参与UPR信号转导途径。  相似文献   

8.
We present the first identification of transient folding intermediates of endogenous thyroglobulin (Tg; a large homodimeric secretory glycoprotein of thyrocytes), which include mixed disulfides with endogenous oxidoreductases servicing Tg folding needs. Formation of disulfide-linked Tg adducts with endoplasmic reticulum (ER) oxidoreductases begins cotranslationally. Inhibition of ER glucosidase activity blocked formation of a subgroup of Tg adducts containing ERp57 while causing increased Tg adduct formation with protein disulfide isomerase (PDI), delayed adduct resolution, perturbed oxidative folding of Tg monomers, impaired Tg dimerization, increased Tg association with BiP/GRP78 and GRP94, activation of the unfolded protein response, increased ER-associated degradation of a subpopulation of Tg, partial Tg escape from ER quality control with increased secretion of free monomers, and decreased overall Tg secretion. These data point towards mixed disulfides with the ERp57 oxidoreductase in conjunction with calreticulin/calnexin chaperones acting as normal early Tg folding intermediates that can be "substituted" by PDI adducts only at the expense of lower folding efficiency with resultant ER stress.  相似文献   

9.
It was previously reported that the up-regulation of ERp29 mRNA depends on the levels of thyroid stimulating hormone (TSH) in the thyrocytes of FRTL-5 cells. In order to investigate the putative new function of ERp29 as an endoplasmic molecular (ER) chaperone, an ERp29-overexpressing FRTL-5 cell line was established. This cell line had approximately three times the levels of ERp29 protein and an enhanced level of thyroglobulin (Tg) secretion. The results showed both enhanced ERp29 expression and an interaction with the other ER chaperones such as GRP94, BiP, ERp72 and calnexin. In addition, ERp29 enhanced the expression of PKR-like ER kinase (PERK), which is a transmembrane protein located in the ER membrane. These findings suggest that ERp29 assists in protein folding as well as in the secretion of the secretory/plasma membrane proteins under close co-operation with other ER chaperones and the ER stress signaler, PERK.  相似文献   

10.
The limitations of high-level expression of virus surface proteins in yeast are not well understood. The inefficiency of yeast to produce active human virus surface glycoproteins, as well as other mammalian glycoproteins, is usually explained by the inefficient folding of the glycoprotein into its characteristic and functional three-dimensional structure from a random coil. The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. To improve folding and solubility of viral surface glycoprotein, the genes encoding human ER resident chaperones calnexin, calreticulin, immunoglobin binding protein (BiP), protein disulfide isomerase (PDI) and foldase (ERp57) were coexpressed together with hemagglutinin gene from measles virus in the yeast Saccharomyces cerevisiae. The effect of coexpressing chaperones on the total yield of measles virus hemagglutinin (MeH) as well as the intracellular fate of the glycoprotein was determined. Our results demonstrated that coexpression of human calnexin noticeably enhanced the quantity of the soluble glycosylated form of MeH in yeast. The coexpression of human calreticulin-, PDI-, ERp57- and BiP-encoding genes did not improve the quality of recombinant MeH.  相似文献   

11.
The altered homeostasis of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) was closely associated with the pathological process of nervous system diseases and insulin resistance. Here, the exact implication of phosphofurin acidic cluster sorting protein 2 (PCAS-2), an anchor protein in the MAM interface, in diabetic kidney disease was investigated. In the kidneys of type 1 and type 2 diabetes mice and HG-induced HK-2 cells, a notable disruption of ER-mitochondria interactions, accompanied by a decreased PACS-2 expression in all subcellular fractions. Furthermore, PACS-2 knockout mice with diabetes displayed accelerated development of proteinuria, deterioration of kidney function, and aggravated disruption of MAM area, ER stress, mitochondrial dysfunction, renal apoptosis, and fibrosis. However, overexpression of PACS-2 effectively protected diabetic kidneys and HG-treated HK-2 cells from renal tubular impairments. Importantly, experimental uncoupling of ER-mitochondria contacts reversed the protective effects of PACS-2 restoration on HK-2 cells under HG conditions. In summary, our data indicate a pivotal role of PACS-2 in the development of diabetic renal tubular injury via the stabilization of MAM.Subject terms: Type 1 diabetes, Type 2 diabetes, Diabetes complications  相似文献   

12.
Protein secretion from the endoplasmic reticulum (ER) requires the enzymatic activity of chaperones and oxidoreductases that fold polypeptides and form disulfide bonds within newly synthesized proteins. The best-characterized ER redox relay depends on the transfer of oxidizing equivalents from molecular oxygen through ER oxidoreductin 1 (Ero1) and protein disulfide isomerase to nascent polypeptides. The formation of disulfide bonds is, however, not the sole function of ER oxidoreductases, which are also important regulators of ER calcium homeostasis. Given the role of human Ero1α in the regulation of the calcium release by inositol 1,4,5-trisphosphate receptors during the onset of apoptosis, we hypothesized that Ero1α may have a redox-sensitive localization to specific domains of the ER. Our results show that within the ER, Ero1α is almost exclusively found on the mitochondria-associated membrane (MAM). The localization of Ero1α on the MAM is dependent on oxidizing conditions within the ER. Chemical reduction of the ER environment, but not ER stress in general leads to release of Ero1α from the MAM. In addition, the correct localization of Ero1α to the MAM also requires normoxic conditions, but not ongoing oxidative phosphorylation.  相似文献   

13.
The endoplasmic reticulum (ER) and mitochondria form contacts that support communication between these two organelles, including synthesis and transfer of lipids, and the exchange of calcium, which regulates ER chaperones, mitochondrial ATP production, and apoptosis. Despite the fundamental roles for ER-mitochondria contacts, little is known about the molecules that regulate them. Here we report the identification of a multifunctional sorting protein, PACS-2, that integrates ER-mitochondria communication, ER homeostasis, and apoptosis. PACS-2 controls the apposition of mitochondria with the ER, as depletion of PACS-2 causes BAP31-dependent mitochondria fragmentation and uncoupling from the ER. PACS-2 also controls formation of ER lipid-synthesizing centers found on mitochondria-associated membranes and ER homeostasis. However, in response to apoptotic inducers, PACS-2 translocates Bid to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated Bid, the release of cytochrome c, and the activation of caspase-3, thereby causing cell death. Together, our results identify PACS-2 as a novel sorting protein that links the ER-mitochondria axis to ER homeostasis and the control of cell fate, and provide new insights into Bid action.  相似文献   

14.
P Spee  J Subjeck  J Neefjes 《Biochemistry》1999,38(32):10559-10566
Transient interactions between molecular chaperones and nascent polypeptide chains assist protein folding in the endoplasmic reticulum. In an experimental setting that resembles the ER, we have used peptides as model substrates to identify and compare substrate specificities of ER-resident chaperones. The ER-located peptide transporter TAP was used to introduce peptides into the lumen of microsomes. In addition to PDI and gp96, previously identified as peptide-binding chaperones in the ER, we show that ERp72, calnexin, and grp170 interact with TAP-translocated peptides. The chaperones that have been identified can all bind peptide substrates that range from 8 to 40 amino acids in a manner independent of ATP. In addition, these chaperones exhibit broad and largely overlapping, however not identical, substrate selectivities. Our data indicate that peptide translocation into microsomes via TAP can be used as a method to monitor substrate selectivities of ER-resident chaperones. The implications of the observed preferences for chaperone-substrate interactions and for chaperones applied as vehicles in peptide-based vaccination strategies will be discussed.  相似文献   

15.
The mechanism, in molecular terms of protein quality control, specifically of how the cell recognizes and discriminates misfolded proteins, remains a challenge. In the secretory pathway the folding status of glycoproteins passing through the endoplasmic reticulum is marked by the composition of the N-glycan. The different glycoforms are recognized by specialized lectins. The folding sensor UGGT acts as an unusual molecular chaperone and covalently modifies the Man9 N-glycan of a misfolded protein by adding a glucose moiety and converts it to Glc1Man9 that rebinds the lectin calnexin. However, further links between the folding status of a glycoprotein and the composition of the N-glycan are unclear. There is little unequivocal evidence for other proteins in the ER recognizing the N-glycan and also acting as molecular chaperones. Nevertheless, based upon a few examples, we suggest that this function is carried out by individual proteins in several different complexes. Thus, calnexin binds the protein disulfide isomerase ERp57, that acts upon Glc1Man9 glycoproteins. In another example the protein disulfide isomerase ERdj5 binds specifically to EDEM (which is probably a mannosidase) and a lectin OS9, and reduces the disulfide bonds of bound glycoproteins destined for ERAD. Thus the glycan recognition is performed by a lectin and the chaperone function performed by a specific partner protein that can recognize misfolded proteins. We predict that this will be a common arrangement of proteins in the ER and that members of protein foldase families such as PDI and PPI will bind specifically to lectins in the ER. Molecular chaperones BiP and GRp94 will assist in the folding of proteins bound in these complexes as well as in the folding of non-glycoproteins.  相似文献   

16.
ERp57 is a member of the protein disulphide isomerase family of oxidoreductases, which are involved in native disulphide bond formation in the endoplasmic reticulum of mammalian cells. This enzyme has been shown to be associated with both calnexin and calreticulin and, therefore, has been proposed to be a glycoprotein-specific oxidoreductase. Here, we identify endogenous substrates for ERp57 by trapping mixed disulphide intermediates between enzyme and substrate. Our results demonstrate that the substrates for this enzyme are mostly heavily glycosylated, disulphide bonded proteins. In addition, we show that the substrate proteins share common structural domains, indicating that substrate specificity may involve specific structural features as well as the presence of an oligosaccharide side chain. We also show that the folding of two of the endogenous substrates for ERp57 is impaired in ERp57 knockout cells and that prevention of an interaction with calnexin or calreticulin perturbs the folding of some, but not all, substrates with multiple disulphide bonds. These results suggest a specific role for ERp57 in the isomerisation of non-native disulphide bonds in specific glycoprotein substrates.  相似文献   

17.
We demonstrate the existence of a large endoplasmic reticulum (ER)-localized multiprotein complex that is comprised of the molecular chaperones BiP; GRP94; CaBP1; protein disulfide isomerase (PDI); ERdj3, a recently identified ER Hsp40 cochaperone; cyclophilin B; ERp72; GRP170; UDP-glucosyltransferase; and SDF2-L1. This complex is associated with unassembled, incompletely folded immunoglobulin heavy chains. Except for ERdj3, and to a lesser extent PDI, this complex also forms in the absence of nascent protein synthesis and is found in a variety of cell types. Cross-linking studies reveal that the majority of these chaperones are included in the complex. Our data suggest that this subset of ER chaperones forms an ER network that can bind to unfolded protein substrates instead of existing as free pools that assembled onto substrate proteins. It is noticeable that most of the components of the calnexin/calreticulin system, which include some of the most abundant chaperones inside the ER, are either not detected in this complex or only very poorly represented. This study demonstrates an organization of ER chaperones and folding enzymes that has not been previously appreciated and suggests a spatial separation of the two chaperone systems that may account for the temporal interactions observed in other studies.  相似文献   

18.
The synthesis of proteins in the endoplasmic reticulum (ER) is limited by the rate of correct disulfide bond formation. This process is carried out by protein disulfide isomerases, a family of ER proteins which includes general enzymes such as PDI that recognize unfolded proteins and others that are selective for specific proteins or classes. Using small-angle X-ray scattering and X-ray crystallography, we report the structure of a selective isomerase, ERp57, and its interactions with the lectin chaperone calnexin. Using isothermal titration calorimetry and NMR spectroscopy, we show that the b' domain of ERp57 binds calnexin with micromolar affinity through a conserved patch of basic residues. Disruption of this binding site by mutagenesis abrogates folding of RNase B in an in vitro assay. The relative positions of the ERp57 catalytic sites and calnexin binding site suggest that activation by calnexin is due to substrate recruitment rather than a direct stimulation of ERp57 oxidoreductase activity.  相似文献   

19.
Olivari S  Molinari M 《FEBS letters》2007,581(19):3658-3664
Proteins synthesized in the endoplasmic reticulum (ER) lumen are exposed to several dedicated chaperones and folding factors that ensure efficient maturation. Nevertheless, protein folding remains error-prone and mutations in the polypeptide sequence may significantly reduce folding-efficiency. Folding-incompetent proteins carrying N-glycans are extracted from futile folding cycles in the calnexin chaperone system upon intervention of EDEM1, EDEM2 and EDEM3, three ER-stress-induced members of the glycosyl hydrolase 47 family. This review describes current knowledge about mechanisms regulating folding and disposal of glycoproteins.  相似文献   

20.
Myelin oligodendrocyte glycoprotein (MOG) is a type I integral membrane glycoprotein that localizes to myelin sheaths in the central nervous system. MOG has important implications in multiple sclerosis, as pathogenic anti-MOG antibodies have been detected in the sera of multiple sclerosis patients. As a membrane protein, MOG achieves its native structure in the endoplasmic reticulum where its folding is expected to be controlled by endoplasmic reticulum chaperones. Calnexin, calreticulin, and ERp57 are essential components of the endoplasmic reticulum quality control where they assist in the proper folding of newly synthesized glycoproteins. In this study, we show that expression of MOG is not affected by the absence of the endoplasmic reticulum quality control proteins calnexin, calreticulin, or ERp57. We also show that calnexin forms complexes with MOG and these interactions might be glycan-independent. Importantly, we show that cell surface targeting of MOG is not disrupted in the absence of the endoplasmic reticulum chaperones. This article is part of a special issue entitled: 11th European Symposium on Calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号