首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteolytic enzyme, thermolysin, degraded the external segment of the membrane glycoprotein of intact vesicular stomatitis (VS) virions but left behind a small nonglycosylated fragment, presumably embedded in the virion membrane. Other proteases generated membrane-associated glycoprotein fragments differing somewhat in molecular weight. The thermolysin-resistant, virion-associated fragment, which can be selectively solubilized by either Triton X-100 or chloroform/methanol, has a molecular weight of 5,200. Amino acid analysis of the glycoprotein fragment reveals a preponderance of hydrophobic amino acids (64% of the residues); the amino-terminal amino acid is alanine as determined by dansylation. Cyanogen bromide digestion of the tail fragment generated two peptides, confirming the presence of one methionine residue per thermolysin-resistant glycoprotein fragment. The secondary structure of this glycoprotein tail peptide is maintained by at least one disulfide bridge. Thermolysin treatment is isolated VS viral glycoprotein in the presence of Triton X-100 also generated a hydrophobic peptide fragment which is very similar to the virion-associated glycoprotein fragment. The amino acid terminus of intact glycoprotein was also found to be alanine as was its dansylated Triton-micellar fragment that resisted thermolytic degradation; this finding suggests that the amino-terminal end of the VS viral glycoprotein is embedded in the virion membrane. These results suggest that the VS viral glycoprotein is an amphipathic molecule, the hydrophilic portion of which contains all the carbohydrate and a lipophilic tail segment which forms lipid or detergent micelles, thus rendering it resistant to proteolysis.  相似文献   

2.
Affinity labeling in situ of the Thermus thermophilus elongation factor Tu (EF-Tu) nucleotide binding site was achieved with periodate-oxidized GDP (GDPoxi) or GTP (GTPoxi) in the absence and presence of elongation factor Ts (EF-Ts). Lys52 and Lys137, both reacting with GDPoxi and GTPoxi, are located in the nucleotide binding region. In the absence of EF-Ts Lys137 and to a lesser extent Lys52 were accessible to the reaction with GTPoxi. GDPoxi reacted much more efficiently with Lys52 than with Lys137 under these conditions [Peter, M. E., Wittman-Liebold, B. & Sprinzl, M. (1988) Biochemistry 27, 9132-9138]. In the presence of EF-Ts, GDPoxi reacted more efficiently with Lys137 than with Lys52, indicating that the interaction of EF-Ts with EF-Tu.GDPoxi induces a conformation resembling that of the EF-Tu.GDPoxi complex in the absence of EF-Ts. Binding of EF-Ts to EF-Tu.GDP enhances the accessibility of the Arg59-Gly60 peptide bond of EF-Tu to trypsin cleavage. Hydrolysis of this peptide bond does not interfere with the ability of EF-Ts to bind to EF-Tu. EF-Ts is protected against trypsin cleavage by interaction with EF-Tu.GDP. High concentrations of EF-Ts did not interfere significantly with aminoacyl-tRNA.EF-Tu.GTP complex formation.  相似文献   

3.
alpha 1-Antitrypsin Christchurch was isolated from the plasma of a Cambodian woman who was heterozygous for this variant and for the normal M protein. Tryptic peptide maps revealed that the inhibitory-site peptide, 359-365 Ser-Ile-Pro-Pro-Glu,Val,Lys, was missing and replaced by two new peptides Ser-Ile-Pro-Pro,Lys and Val-Lys, indicating a mutation of 363 Glu----Lys. There was no obvious clinical condition associated with this new antitrypsin. Competition experiments showed that antitrypsin Christchurch reacted at the same rate as normal antitrypsin in the presence of limiting amounts of trypsin, chymotrypsin, thrombin and neutrophil elastase. Both inhibitors were inactivated by catalytic amounts of papain. This inactivation was due to cleavage at the phenylalanine residue at the P7 position, seven residues towards the N-terminal of the inhibitory site. A one-step ethanol extraction procedure is described for isolating the papain cleavage products.  相似文献   

4.
Kiefer D  Kuhn A 《The EMBO journal》1999,18(22):6299-6306
Bacterial integral inner membrane proteins are either translocated across the lipid bilayer using an energy-driven enzyme, such as the Sec translocase, or they might interact directly with the membrane due to hydrophobic forces. We report that the single-spanning Pf3 coat protein is spontaneously inserted into the membrane of Escherichia coli and requires the electrical component of the membrane potential (DeltaPsi) to translocate its N-terminal region. This results in a final N(out)C(in) orientation of the protein in the cytoplasmic membrane, due the potential-driven translocation of the aspartyl residue at position 18 in the hydrophilic N-terminal tail. Uncharged protein tails are only translocated when the hydrophobic transmembrane region of the protein has been extended. An extended transmembrane anchor allows membrane insertion in the absence of an electrochemical membrane potential, but also causes the loss of a strict determination of the topology.  相似文献   

5.
We studied the interaction of the peptide AAMQMLKETINEEAAEWDRVHPVHAGPIA from the HIV-1 p24 protein in the presence of SDS (anionic) and CTABr (cationic) micelles at pH 7.0 by circular dichroism, fluorescence, and electron spin resonance (ESR). The micelles induced secondary structure as well as a blue shift in the tryptophan fluorescence emission, indicating an interaction between the peptide and the micelles. However, different contents of secondary structure elements were found when the peptide interacts with SDS or CTABr micelles. Steady-state anisotropy indicates a constraint on the rotational mobility of the tryptophan residue of the peptide upon interaction with micelles. ESR studies pointed to different locations for the peptide in either micelle. Our results suggested that at least part of the peptide might be located at the hydrophobic core of the CTABr micelles, probably at the C-terminal region, while it is more inserted into the SDS micelles.  相似文献   

6.
The non-collagenous N-terminal segment of type I procollagen from dermatosparactic sheep skin was isolated in the form of the peptide Col 1 from a collagenase digest of the protein. The peptide has a blocked N-terminus, which was identified as pyrrolid-2-one-5-carboxylic acid. Appropriate overlapping fragments were prepared from reduced and alkylated peptide Col 1 by cleavage with trypsin at lysine, arginine and S-aminoethyl-cysteine residues and by cleavage with staphylococcal proteinase at glutamate residues. Amino acid sequence analysis of these fragments by Edman degradation and mass spectrometry established the whole sequence of peptide Col 1 except for a peptide junction (7--8) and a single Asx residue (44), and demonstrated that peptide Col 1 consists of 98 amino acid residues. The N-terminal portion of peptide Col 1 (86 residues) shows an irregular distribution of glycine, whereas the C-terminal portion (12 residues) possesses the triplet structure Gly-Xy and is apparently derived from the precursor-specific collagenous domain of procollagen. The central region of the peptide contains ten cysteine residues located between positions 18 and 73 and shows alternating polar and hydrophobic sequence elements. The regions adjacent to the cysteine-rich portion have a hydrophilic nature and are abundant in glutamic acid. The data are consistent with previous physicochemical and immunological evidence that distinct regions at the N- and C-termini of the non-collagenous domain possess a less rigid conformation than does the central portion of the molecule.  相似文献   

7.
Translocation of N-terminal tails across the plasma membrane.   总被引:2,自引:6,他引:2       下载免费PDF全文
G Cao  R E Dalbey 《The EMBO journal》1994,13(19):4662-4669
Previously we have shown that the first hydrophobic domain of leader peptidase (lep) can function to translocate a short N-terminal 18 residue antigenic peptide from the phage Pf3 coat protein across the plasma membrane of Escherichia coli. We have now examined the mechanism of insertion of N-terminal periplasmic tails and have defined the features needed to translocate these regions. We find that short tails of up to 38 residues are efficiently translocated in a SecA- and SecY-independent manner while longer tails are very poorly inserted. Efficient translocation of a 138 residue tail is restored and is Sec-dependent by the addition of a leader sequence to the N-terminus of the protein. We also find that while there is no amphiphilic helix requirement for N-terminal translocation, there is a charge requirement that is needed within the tail; an arginine and lysine residue can inhibit or completely block translocation when introduced into the tail region. Intriguingly, the membrane potential is required for insertion of a 38 residue tail but not for a 23 residue tail.  相似文献   

8.
Ribosome-inactivating proteins (RIPs) inhibit protein synthesis by enzymatically depurinating a specific adenine residue at the sarcin-ricin loop of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation centre of the ribosome. Here, we present the 2.2 Å crystal structure of trichosanthin (TCS) complexed to the peptide SDDDMGFGLFD, which corresponds to the conserved C-terminal elongation factor binding domain of the ribosomal P protein. The N-terminal region of this peptide interacts with Lys173, Arg174 and Lys177 in TCS, while the C-terminal region is inserted into a hydrophobic pocket. The interaction with the P protein contributes to the ribosome-inactivating activity of TCS. This 11-mer C-terminal P peptide can be docked with selected important plant and bacterial RIPs, indicating that a similar interaction may also occur with other RIPs.  相似文献   

9.
Adrenocorticotropin (ACTH) and α-melanocyte stimulating hormone (α-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of α-MSH are the same initial sequence of ACTH and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1–21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in α-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1–24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in α-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems.  相似文献   

10.
Kawai  Koichiro  Muraguchi  Atsushi 《Hydrobiologia》1998,368(1-3):91-99
A gene of a monomeric hemoglobin, the Pol n component of MV, of a chironomid species, Polypedilum nubifer, was cloned by screening the larval cDNA library with a nucleotide probe corresponding to the N-terminal sequence of purified MV. A clone, 8N, was 755 bp long and comprised a 60 bp 5′ non-coding region, a 209 bp 3′ non-coding region and a 486 bp coding region for 160 amino acids. A comparison of N-terminal sequence of purified MV with that estimated from the DNA sequence of clone 8N, revealed the existence of a signal peptide consisting of 14 residues. This signal peptide was almost exclusively composed of hydrophobic amino acids, suggesting the peptide functions in preglobin transport across the endoplasmic reticulum. The estimated sequence of mature globin of MV showed only 41% of homology to that of CTT-IV, a chromatographically similar monomeric Hb to MV, of an another chironomid species, Chironomus thummi thummi, in a 146 alignment. However, displacements in hydrophilic ⇆hydrophobic manner were observed only at 28 positions whereas those in hydrophobic ⇆hydrophobic or hydrophilic ⇆hydrophilic manner were observed at 45 positions. Furthermore, a comparison of the haem contact positions between these two Hbs showed a remarkable conservance and displacements only in hydrophilic ⇆ hydrophilic or hydrophobic ⇆hydrophobic manner, suggesting the crucial role of these positions in Hb functionality. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Booth V  Waring AJ  Walther FJ  Keough KM 《Biochemistry》2004,43(48):15187-15194
Although the membrane-associated surfactant protein B (SP-B) is an essential component of lung surfactant, which is itself essential for life, the molecular basis for its activity is not understood. SP-B's biophysical functions can be partially mimicked by subfragments of the protein, including the C-terminus. We have used NMR to determine the structure of a C-terminal fragment of human SP-B that includes residues 63-78. Structure determination was performed both in the fluorinated alcohol hexafluoro-2-propanol (HFIP) and in sodium dodecyl sulfate (SDS) micelles. In both solvents, residues 68-78 take on an amphipathic helical structure, in agreement with predictions made by comparison to homologous saposin family proteins. In HFIP, the five N-terminal residues of the peptide are largely unstructured, while in SDS micelles, these residues take on a well-defined compact conformation. Differences in helical residue side chain positioning between the two solvents were also found, with better agreement between the structures for the hydrophobic face than the hydrophilic face. A paramagnetic probe was used to investigate the position of the peptide within the SDS micelles and indicated that the peptide is located at the water interface with the hydrophobic face of the helix oriented inward, the hydrophilic face of the helix oriented outward, and the N-terminal residues even farther from the micelle center than those on the hydrophilic face of the alpha-helix. Interactions of basic residues of SP-B with anionic lipid headgroups are known to have an impact on function, and these studies demonstrate structural ramifications of such interactions via the differences observed between the peptide structures determined in HFIP and SDS.  相似文献   

12.
Native molecular forms of acetylcholinesterase (AChE) present in a microsomal fraction enriched in SR of rabbit skeletal muscle were characterized by sedimentation analysis in sucrose gradients and by digestion with phospholipases and proteinases. The hydrophobic properties of AChE forms were studied by phase-partition of Triton X-114 and Triton X-100-solubilized enzyme and by comparing their migration in sucrose gradient containing either Triton X-100 or Brij 96. We found that in the microsomal preparation two hydrophilic 13.5 S and 10.5 S forms and an amphiphilic 4.5 S form exist. The 13.5 S is an asymmetric molecule which by incubation with collagenase and trypsin is converted into a 'lytic' 10.5 S form. The hydrophobic 4.5 S form is the predominant one in extracts prepared with Triton X-100. Proteolytic digestion of the membranes with trypsin brought into solution a significant portion of the total activity. Incubation of the membranes with phospholipase C failed to solubilize the enzyme. The sedimentation coefficient of the amphiphilic 4.5 S form remained unchanged after partial reduction, thus confirming its monomeric structure. Conversion of the monomeric amphiphilic form into a monomeric hydrophilic molecule was performed by incubating the 4.5 S AChE with trypsin. This conversion was not produced by phospholipase treatment.  相似文献   

13.
Plantaricin-149 is a bacteriocin produced by Lactobacillus plantarum NRIC 149 (a LAB isolated from pineapple), which consists of a peptidic chain made up of 22 amino acid residues [Kato et al. J. Ferment. Bioeng. 1994; 77: 277-282]. In this work, a synthetic C-terminal amidated peptide analog denoted Pln149a was prepared by SPPS-Fmoc chemistry and the antagonistic activity against gram-positive and gram-negative bacteria was tested. The secondary structure was studied by circular dichroism (CD) and the vicinity of the tyrosine residue by fluorescence spectroscopy under different conditions. We report the results of the interaction of Pln149a with reverse micelles prepared from the amphiphilic AOT in cyclohexane.Synthetic plantaricin was active against one strain of Staphylococcus aureus and four strains of Listeria genus at pH 5.5 and 7.4 and, like its natural variant, inhibited L. plantarum ATCC 8014.The data derived from spectroscopic measurements in presence of AOT reverse micelles suggest that the secondary structure of the peptide upon interaction is an alpha-helix. In this membrane model, the hydrophobic side of the alpha-helix is inserted into the micelles, leaving the lysines exposed to the solvent and interacting with the polar moieties of AOT. The fluorescence data point out that the N-terminal tyrosine residue is close to the micellar interface.  相似文献   

14.
During intoxication of a cell, the translocation (T) domain of the diphtheria toxin helps the passage of the catalytic domain across the membrane of the endosome into the cytoplasm. We have investigated the behavior of the N-terminal region of the T domain during the successive steps of its interaction with membranes at acidic pH using tryptophan fluorescence, its quenching by brominated lipids, and trypsin digestion. The change in the environment of this region was monitored using mutant W281F carrying a single native tryptophan at position 206 at the tip of helix TH1. The intrinsic propensity to interact with the membrane of each helix of the N-terminus of the T domain, TH1, TH2, TH3, and TH4, was also studied using synthetic peptides. We showed the N-terminal region of the T domain was not involved in the binding of the domain to the membrane, which occurred at pH 6 mainly through hydrophobic effects. At that stage of the interaction, the N-terminal region remained strongly solvated. Further acidification eliminated repulsive electrostatic interactions between this region and the membrane, allowing its penetration into the membrane by attractive electrostatic interactions and hydrophobic effects. The peptide study indicated the nature of forces contributing to membrane penetration. Overall, the data suggested that the acidic pH found in the endosome not only triggers the formation of the molten globule state of the T domain required for membrane interaction but also governs a progressive penetration of the N-terminal part of the T domain in the membrane. We propose that these physicochemical properties are necessary for the translocation of the catalytic domain.  相似文献   

15.
NADPH-cytochrome P450 reductase (CPR) is a membrane-bound flavoprotein that interacts with the membrane via its N-terminal hydrophobic sequence (residues 1-56). CPR is the main electron transfer component of hydroxylation reactions catalyzed by microsomal cytochrome P450s. The membrane-bound hydrophobic domain of NADPH-cytochrome P450 reductase is easily removed during limited proteolysis and is the subject of spontaneous digestion of membrane-binding fragment at the site Lys56-Ile57 by intracellular trypsin-like proteases that makes the flavoprotein very unstable during purification or expression in E. coli. The removal of the N-terminal hydrophobic sequence of NADPH-cytochrome P450 reductase results in loss of the ability of the flavoprotein to interact and transfer electrons to cytochrome P450. In the present work, by replacement of the lysine residue (Lys56) with Gln using site directed mutagenesis, we prepared the full-length flavoprotein mutant Lys56Gln stable to spontaneous proteolysis but possessing spectral and catalytic properties of the wild type flavoprotein. Limited proteolysis with trypsin and protease from Staphylococcus aureus of highly purified and membrane-bound Lys56Gln mutant of the flavoprotein as well as wild type NADPH-cytochrome P450 reductase allowed localization of some amino acids of the linker fragment of NADPH-cytochrome P450 reductase relative to the membrane. During prolong incubation or with increased trypsin ratio, the mutant form showed an alternative limited proteolysis pattern, indicating the partial accessibility of another site. Nevertheless, the membrane-bound mutant form is stable to trypsinolysis. Truncated forms of the flavoprotein (residues 46-676 of the mutant or 57-676 of wild type NADPH-cytochrome P450 reductase) are unable to transfer electrons to cytochrome P450c17 or P4503A4, confirming the importance of the N-terminal sequence for catalysis. Based on the results obtained in the present work, we suggest a scheme of structural topology of the N-terminal hydrophobic sequence of NADPH-cytochrome P450 reductase in the membrane.  相似文献   

16.
Fourteen tryptic peptides and nine intermediates were identified as products of trypsin digestion of reduced and S-3-(trimethylated amino) propylated lysozyme. Kinetics of the appearance and disappearance of these products were observed by monitoring the peak areas on the chromatogram. In spite of the complicated reaction pathways, kinetics of the digestion of proteins and several intermediate products show simple decay curves with a single rate constant. In this paper, the trypsin susceptibility of the individual cleavage site is defined as a hydrolytic rate constant of the susceptible peptide bond in the presence of 10 nM trypsin. The cleavage sites of unfolded lysozyme are classified into two groups in terms of the trypsin susceptibility: one has a high susceptibility (10–20 h?1) and the other a low susceptibility (1.0–2.0 h?1). In the unfolded state of lysozyme, in conclusion, the region from residues 15 to 61 has a strong resistance to trypsin digestion; on the other hand, the C-terminal half of the polypeptide chain is flexible enough to fit into the active site of trypsin. In addition, six kinds of pentapeptides were synthesized as analogues of lysozyme fragments including Arg 14, Arg 21, Lys 33, Arg 45, Arg 61, and Arg 73. Kinetics of typtic digestion of them were observed. Both kcat and KM were determined for these synthetic pentapeptides. The susceptibility of each cleavage site in pentapeptides is determined and compared with that corresponding in proteins. The susceptibility is usually higher when the susceptible peptide chain is flexible. However, susceptibilities of a few sites in proteins are lower than those in pentapeptides. This means that the peptapeptides, this means that the peptide chains tend to fold locally to prevent trypsin from binding to the sites. It was found that the sites of Arg 21 and Arg 45 are indeed resistant to trypsin, but the site of Lys 33 is not so much, although the hydrolytic rate at Lys 33 itself is extremely slow. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
D L Newton  C B Klee 《Biochemistry》1989,28(9):3750-3757
In the presence of Ca2+ norchlorpromazine isothiocyanate forms a monocovalent complex with calmodulin: CAPP1-calmodulin (Newton et al, 1983). Trypsin digestion of [3H]CAPP1-calmodulin yields as the major radioactive peptide N epsilon-CAPP-Lys-Met-Lys, corresponding to residues 75-77 of calmodulin. Stoichiometric amounts of all other expected tryptic peptides are also found, indicating that norchlorpromazine isothiocyanate selectively acylates Lys 75. A second molecule of CAPP-NCS can react, albeit slowly, with calmodulin to form CAPP2-calmodulin. Fragments 38-74 and 127-148 are completely missing from the trypsin digests of CAPP2-calmodulin without deliberate exposure to UV irradiation. Possibly the lengthy preparation of CAPP2-calmodulin favors photolysis, caused by room lights, of the putative CAPP-binding domains located in these two peptides. Lys 148, the sole lysyl residue in fragment 127-148, is a probable site of attachment of the second molecule of CAPP. UV irradiation of CAPP1-calmodulin, followed by digestion with trypsin, results in the selective loss of 50% each of peptides containing residues 38-74 and 127-148, suggesting that these peptides contain the hydrophobic amino acids that form the phenothiazine-binding sites. The loss of peptides encompassing residues 38-74 and 127-148, located in the amino and carboxyl halves of calmodulin, respectively, suggests that the hydrophobic rings of CAPP can bind at either one of the two phenothiazine sites. Computer modeling of CAPP1-calmodulin with the X-ray coordinates of calmodulin (Babu et al., 1986) indicates that CAPP attached to Lys 75 cannot interact with the carboxyl-terminal phenothiazine-binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Novel procedures for structural analysis of the 'reactive-centre' residues, particularly the P1 residue, of the dysfunctional C1-inhibitor proteins found in the plasmas of type II hereditary angio-oedema (HAE) patients are described. C1-inhibitor is adsorbed directly from plasma on to Sepharose-anti-(C1 inhibitor) beads. The P1 residue of C1 inhibitor is arginine and hence a potential cleavage site for trypsin. Thus trypsin digestion of the immobilized protein, followed by SDS/PAGE of the released fragments, identifies P1 residue mutations. Pseudomonas aeruginosa elastase digestion of the immobilized protein, followed by purification of the released C-terminal peptide (by h.p.l.c.) and N-terminal sequence analysis defines the new P1 residue (or other mutations in the reactive-centre region). The techniques are both rapid and highly sensitive, requiring only 400 microliters of plasma. In addition, they permit accurate assessment of the level of normal (functional) inhibitor in a subclass of type II HAE plasmas, those containing P1-residue mutant proteins.  相似文献   

19.
The complete amino acid sequence of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli has been established in the following manner. After being reduced with dithiothreitol, the purified aldolase was alkylated with iodoacetamide and subsequently digested with trypsin. The resulting 19 peptide peaks observed by high performance liquid chromatography, which compared with 21 expected tryptic cleavage products, were all isolated, purified, and individually sequenced. Overlap peptides were obtained by a combination of sequencing the N-terminal region of the intact aldolase and by cleaving the intact enzyme with cyanogen bromide followed by subdigestion of the three major cyanogen bromide peptides with either Staphylococcus aureus V8 endoproteinase, endoproteinase Lys C, or trypsin after citraconylation of lysine residues. The primary structure of the molecule was determined to be as follows. (formula; see text) 2-Keto-4-hydroxyglutarate aldolase from E. coli consists of 213 amino acids with a subunit and a trimer molecular weight of 22,286 and 66,858, respectively. No microheterogeneity is observed among the three subunits. The peptide containing the active-site arginine residue (Vlahos, C. J., Ghalambor, M. A., and Dekker, E. E. (1985) J. Biol. Chem. 260, 5480-5485) was also isolated and sequenced; this arginine residue occupies position 49. The Schiff base-forming lysine residue (Vlahos, C. J., and Dekker, E. E. (1986) J. Biol. Chem. 261, 11049-11055) is located at position 133. Whereas the active-site lysine peptide of this aldolase shows 65% homology with the same peptide of 2-keto-3-deoxy-6-phosphogluconate aldolase from Pseudomonas putida, these two proteins in toto show 49% homology.  相似文献   

20.
The unspecific proteinase K and the specific proteases alpha-chymotrypsin, trypsin and S. aureus V 8 protease were used in order to determine the orientation of the polypeptides B 870-alpha and B 870-beta from the major antenna complex B 870 of Rs. rubrum G-9+ within the chromatophore membrane (inside-out vesicle). Although B 870-alpha exhibits cleavable peptide bonds, treatment with specific proteases yielded splitting only in B 870-beta within the N-terminal region. In the case of proteinase K, which was most effective, mainly 6 (B 870-alpha) and 16 (B 870-beta) amino acid residues were removed from their N-terminal parts as proved by means of Edman degradation of cleavage products. The major peptide bonds cleaved were identified as Gln6-Leu7 in B 870-alpha and as Lys16-Glu17 in B 870-beta. The central hydrophobic stretch regions and the relatively hydrophilic C-terminal parts of both light-harvesting polypeptides were not affected by proteinase K. On the basis of these degradation experiments a transmembrane orientation of B 870-alpha and B 870-beta is postulated, with their N-terminal towards the cytoplasm and their C-termini towards periplasm with regard to the photosynthetic membrane. This hypothesis is supported by the transmembrane model proposed by Brunisholz et al. (Hoppe-Seyler's Z., Physiol. Chem., (1984) 365, 675-688) in which the hydrophobic stretch of B 870-alpha and of B 870-beta forming an alpha-helix would span the membrane once. Organic solvent extraction of chromatophores treated with proteinase K yielded a fairly pure polypeptide fragment with an apparent molecular mass of 14000 Da. Its N-terminal amino-acid sequence is identical with the sequence within the N-terminal region of the reaction centre subunit L of Rs. rubrum G-9+. Thus it is most likely that as in the case of B 870-beta, proteinase K removed 16 amino acid residues from the N-terminal part of subunit L. This subunit therefore also seems to be exposed at the surface of the cytoplasmic side of the chromatophore membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号