首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transient absorption spectroscopy has been applied to investigate the energy dissipation mechanisms in the nonameric fucoxanthin-chlorophyll-a,c-binding protein FCPb of the centric diatom Cyclotella meneghiniana. FCPb complexes in their unquenched state were compared with those in two types of quenching environments, namely aggregation-induced quenching by detergent removal, and clustering via incorporation into liposomes. Applying global and target analysis, in combination with a fluorescence lifetime study and annihilation calculations, we were able to resolve two quenching channels in FCPb that involve chlorophyll-a pigments for FCPb exposed to both quenching environments. The fast quenching channel operates on a timescale of tens of picoseconds and exhibits similar spectral signatures as the unquenched state. The slower quenching channel operates on a timescale of tens to hundreds of picoseconds, depending on the degree of quenching, and is characterized by enhanced population of low-energy states between 680 and 710?nm. The results indicate that FCPb is, in principle, able to function as a dissipater of excess energy and can do this in vitro even more efficiently than the homologous FCPa complex, the sole complex involved in fast photoprotection in these organisms. This indicates that when a complex displays photoprotection-related spectral signatures in vitro it does not imply that the complex participates in photoprotection in vivo. We suggest that FCPa is favored over FCPb as the sole energy-regulating complex in diatoms because its composition can more easily establish the balance between light-harvesting and quenching required for efficient photoprotection.  相似文献   

2.
The cyanobacterium Acaryochloris marina is unique because it mainly contains Chlorophyll d (Chl d) in the core complexes of PS I and PS II instead of the usually dominant Chl a. Furthermore, its light harvesting system has a structure also different from other cyanobacteria. It has both, a membrane-internal chlorophyll containing antenna and a membrane-external phycobiliprotein (PBP) complex. The first one binds Chl d and is structurally analogous to CP43. The latter one has a rod-like structure consisting of three phycocyanin (PC) homohexamers and one heterohexamer containing PC and allophycocyanin (APC). In this paper, we give an overview on the investigations of excitation energy transfer (EET) in this PBP-light-harvesting system and of charge separation in the photosystem II (PS II) reaction center of A. marina performed at the Technische Universität Berlin. Due to the unique structure of the PBP antenna in A. marina, this EET occurs on a much shorter overall time scale than in other cyanobacteria. We also briefly discuss the question of the pigment composition in the reaction center (RC) of PS II and the nature of the primary donor of the PS II RC.  相似文献   

3.
Development of the time-resolved fluorescence spectroscopy in the pico-second time range and its application to the energy transfer processes in many photosynthetic organisms is reviewed here. This method enabled visualization of energy transfer processes by three-dimensional expression of fluorescence spectra and discrimination of kinetic components and spectral components. The second generation of the ultrafast fluorescence spectroscopy is the femto-second (fs) fluorescence up-conversion, and this has enabled analyses of the transfer processes from carotenoids to chlorophylls with a resolution of less than 100 fs. For future progress, a further development of the spectroscopy is indispensable as well as structural data at atomic resolution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Photosynthetic membranes comprise a network of light harvesting and reaction center pigment-protein complexes responsible for the primary photoconversion reactions: light absorption, energy transfer and electron cycling. The structural organization of membranes of the purple bacterial species Rb. sphaeroides has been elucidated in most detail by means of polarized light spectroscopy and atomic force microscopy. Here we report a functional characterization of native and untreated membranes of the same species adsorbed onto a gold surface. Employing fluorescence confocal spectroscopy and light-induced electrochemistry we show that adsorbed membranes maintain their energy and electron transferring functionality. Gold-adsorbed membranes are shown to generate a steady high photocurrent of 10 μA/cm2 for several minutes and to maintain activity for up to three days while continuously illuminated. The surface-adsorbed membranes exhibit a remarkable functionality under aerobic conditions, even when exposed to light intensities well above that of direct solar irradiation. The component at the interface of light harvesting and electron cycling, the LH1 complex, displays exceptional stability, likely contributing to the robustness of the membranes. Peripheral light harvesting LH2 complexes show a light intensity dependent decoupling from photoconversion. LH2 can act as a reversible switch at low-light, an increased emitter at medium light and photobleaches at high light.  相似文献   

5.
The precise position of the upper exciton component and relevant vibronic transitions of the B850 ring in peripheral light-harvesting complexes from purple photosynthetic bacteria are important values for determining the exciton bandwidth and electronic structure of the B850 ring. To determine the presence of these components in wild-type LH2 complexes the pump-probe femtosecond transient spectra obtained with excitation into the 730-840 nm spectral range are analyzed. We show that at excitation wavelengths less than 780 nm B850 absorption bands are present and that, in accordance with exciton theory, these bands peak further in the blue when the lowest optically allowed transition is more red-shifted.  相似文献   

6.
7.
Aaron M. Collins 《BBA》2009,1787(8):1050-61
The light-harvesting-reaction center (LHRC) complex from the chlorosome-lacking filamentous anoxygenic phototroph (FAP), Roseiflexus castenholzii (R. castenholzii) was purified and characterized for overall pigment organization. The LHRC is a single complex that is comprised of light harvesting (LH) and reaction center (RC) polypeptides as well as an attached c-type cytochrome. The dominant carotenoid found in the LHRC is keto-γ-carotene, which transfers excitation to the long wavelength antenna band with 35% efficiency. Linear dichroism and fluorescence polarization measurements indicate that the long wavelength antenna pigments absorbing around 880 nm are perpendicular to the membrane plane, with the corresponding Qy transition dipoles in the plane of the membrane. The antenna pigments absorbing around 800 nm, as well as the bound carotenoid, are oriented at a large angle with respect to the membrane. The antenna pigments spectroscopically resemble the well-studied LH2 complex from purple bacteria, however the close association with the RC makes the light harvesting component of this complex functionally more like LH1.  相似文献   

8.
Aspects of intramolecular light energy and electron transfer will be discussed for three protein cofactor complexes, whose three-dimensional structures have been elucidated by x-ray crystallography: Components of light harvesting cyanobacterial phycobilisomes, the purple bacterial reaction centre, and the blue multi-copper oxidases. A wealth of functional data is available for these systems which allow specific correlations between structure and function and general conclusions about light energy and electron transfer in biological materials to be made.  相似文献   

9.
Proteins of the chromaffin granule membrane were covalently labeled in situ with sulfhydryl-specific fluorophores. Using MIANS (maleimide iodoaminonaphthyl sulfonate) as the donor and fluorescein mercury acetate or fluorescein-5-maleimide as the acceptor, Förster fluorescence resonance energy transfer (FRET) could be employed to measure the degree of inter-membrane and intra-membrane protein-protein contact upon Ca2+-induced aggregation of the membranes. The four major findings were: (1) Raising the Ca2+ concentration to approx. 500 μM causes the proteins to aggregate in the plane of the membrane. This is demonstrated by Ca2+-induced increases in the fluorescence resonance energy transfer in double labeled membranes. This effect is not protein-concentration dependent and occurs at calcium concentrations too low for granule aggregation, implying intra-membrane protein clustering or patching. To our knowledge this is the first direct demonstration of the fluid mosaic nature of subcellular organelles. (2) If two sets of granules are labeled separately, Ca2+-induced aggregation brings at least 74% of the labeled proteins into close transmembrane proximity. This effect is also observed at 10–100-fold slower rates in the absence of calcium and can be greatly reduced by depleting the granule membrane of labeled peripheral proteins. It is enhanced if the granules are aggregated by Ca2+ or K+. We conclude that (some) peripheral proteins can transfer from one membrane surface to another. (3) Aggregation of separately labeled sets of membranes by Ca2+ also produces transmembrane energy transfer since: (a) the Km for Ca2+-induced quantum transfer is in the same range as the Km for aggregation; (b) the reaction is protein-concentration dependent; (c) reversal of aggregation also (partially) reverses donor quenching. (4) A kinetic analysis of the transmembrane effect shows it to be 5–10-fold slower than aggregation itself, supporting earlier suggestions (Haynes, D.H., Kolber, M. and Morris, S.J., (1979) J. Theor. Biol. 81, 713–743) that lipid and protein rearrangements are secondary to granule membrane aggregation.  相似文献   

10.
Around photosystem II (PSII), the peripheral antenna system absorbs sunlight energy and transfers it to the core complex where the water-splitting and oxygen-evolving reaction takes place. The peripheral antennae in plants are composed of various light-harvesting complexes II (LHCII). Recently, the three-dimensional structure of the C2S2M2-type PSII-LHCII supercomplex from Pisum sativum (PsPSII) has been solved at 2.7-Å resolution using the single-particle cryo-electron microscopy method. The large homodimeric supercomplex has a total molecular weight of >1400?kDa. Each monomer has a core complex surrounded by strongly and moderately bound LHCII trimers, as well as CP29, CP26, and CP24 monomers. Here, we review and present a detailed analysis of the structural features of this supramolecular machinery. Specifically, we discuss the structural differences around the oxygen-evolving center of PSII from different species. Furthermore, we summarize the existing knowledge of the structures and locations of peripheral antenna complexes, and dissect the excitation energy transfer pathways from the peripheral antennae to the core complex. This detailed high-resolution structural information provides a solid basis for understanding the functional behavior of plant PSII-LHCII supercomplex.  相似文献   

11.
Lev I Krishtalik 《BBA》2003,1604(1):13-21
The activation barrier (the activation free energy) for the reaction's elementary act proper does not depend on the presence of reactants outside the reaction complex. The barrier is determined directly by the concentration-independent configurational free energy. In the case of redox reactants with pH-dependent redox potential, only the pH-independent quantity, the configurational redox potential enters immediately into expression for activation energy. Some typical cases of such reactions have been discussed (e.g., simultaneous proton and electron detachment, acid dissociation followed by oxidation, dissociation after oxidation, and others). For these mechanisms, the algorithms for calculation of the configurational redox potential from the experimentally determined redox potentials have been described both for the data related to a dissolved reactant or to a prosthetic group of an enzyme. Some examples of pH-dependent enzymatic redox reactions, in particular for the Rieske iron-sulfur protein, have been discussed.  相似文献   

12.
Resonance energy transfer (RET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as donors and the heme groups of cytochrome c (cyt c) as acceptors was examined in PC/PG model membranes containing 10, 20 or 40 mol% PG with an emphasis on evaluating lipid demixing caused by this protein. The differences between AV-PC and AV-PG RET profiles observed at PG content 10 mol% were attributed to cyt c ability to produce segregation of acidic lipids into lateral domains. The radius of lipid domains recovered using Monte-Carlo simulation approach was found not to exceed 4 nm pointing to the local character of cyt c-induced lipid demixing. Increase of the membrane PG content to 20 or 40 mol% resulted in domain dissipation as evidenced by the absence of any RET enhancement while recruiting AV-PG instead of AV-PC.  相似文献   

13.
14.
Here we describe the design and construction of an imaging construct with high bioluminescent resonance energy transfer (BRET) efficiency that is composed of multiple quantum dots (QDs; λem = 655 nm) self-assembled onto a bioluminescent protein, Renilla luciferase (Rluc). This is facilitated by the streptavidin–biotin interaction, allowing the facile formation of a hybrid-imaging construct (HIC) comprising up to six QDs (acceptor) grafted onto a light-emitting Rluc (donor) core. The resulting assembly of multiple acceptors surrounding a donor permits this construct to exhibit high resonance energy transfer efficiency (∼64.8%). The HIC was characterized using fluorescence excitation anisotropy measurements and high-resolution transmission electron microscopy. To demonstrate the application of our construct, a generation-5 (G5) polyamidoamine dendrimer (PAMAM) nanocarrier was loaded with our HIC for in vitro and in vivo imaging. We envision that this design of multiple acceptors and bioluminescent donor will lead to the development of new BRET-based systems useful in sensing, imaging, and other bioanalytical applications.  相似文献   

15.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

16.
The bacterium Escherichia coli is one of the most popular model systems to study the assembly of membrane proteins of the so-called helix-bundle class. Here, based on this system, we review and discuss what is currently known about the assembly of these membrane proteins. In addition, we will briefly review and discuss how E. coli has been used as a vehicle for the overexpression of membrane proteins.  相似文献   

17.
Cryptomonads and chlorarachniophytes acquired photosynthesis independently by engulfing and retaining eukaryotic algal cells. The nucleus of the engulfed cells (known as a nucleomorph) is much reduced and encodes only a handful of the numerous essential plastid proteins normally encoded by the nucleus of chloroplast-containing organisms. In cryptomonads and chlorarachniophytes these proteins are thought to be encoded by genes in the secondary host nucleus. Genes for these proteins were potentially transferred from the nucleomorph (symbiont nucleus) to the secondary host nucleus; nucleus to nucleus intracellular gene transfers. We isolated complementary DNA clones (cDNAs) for chlorophyll-binding proteins from a cryptomonad and a chlorarachniophyte. In each organism these genes reside in the secondary host nuclei, but phylogenetic evidence, and analysis of the targeting mechanisms, suggest the genes were initially in the respective nucleomorphs (symbiont nuclei). Implications for origins of secondary endosymbiotic algae are discussed.  相似文献   

18.
Electronic connection between Qo and Qi quinone catalytic sites of dimeric cytochrome bc1 is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the latter remains unclear. Here, using a series of mutated hybrid cytochrome bc1-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.  相似文献   

19.
Proteolytic processing plays crucial roles in physiological and pathophysiological cellular functions such as peptide generation, cell cycle, and apoptosis. We developed a novel biophysical bioluminescence resonance energy transfer (BRET) system between a secreted Vargula luciferase (Vluc) and an enhanced yellow fluorescent protein (EYFP) for visualization of cell biological processes. The bioluminescence spectrum of the fusion protein (Vluc-EYFP) is bimodal (lambdamax = 460 nm (Vluc) and 525nm (EYFP)), indicating that the excited-state energy of Vluc transfers to EYFP (in short, BRET). The BRET signal can be measured in the culture medium and pursue quantitative production of two neuropeptides, nocistatin (NST) and nociceptin/orphanin FQ (N/OFQ) in living cells. NST and N/OFQ are located in tandem on the same precursor, but NST exhibits antagonistic action against N/OFQ-induced central functions. Insertion of a portion of the NST-N/OFQ precursor (Glu-Gln-Lys-Gln-Leu-Gln-Lys-Arg-Phe-Gly-Gly-Phe-Tyr-Gly) in Vluc-EYFP makes the fusion protein cleavable at Lys-Arg in NG108-15 cells, and proprotein convertase 1 enhances this digestion. The change in BRET signals quantifies the processing of the fusion protein. Our novel intramolecular BRET system using a secreted luciferase is useful for investigating peptide processing in living cells.  相似文献   

20.
Two distinct oxysterol binding protein (OSBP)-related proteins (ORPs) have been identified from the parasitic protist Cryptosporidium parvum (CpORP1 and CpORP2). The short-type CpOPR1 contains only a ligand binding (LB) domain, while the long-type CpORP2 contains Pleckstrin homology (PH) and LB domains. Lipid-protein overlay assays using recombinant proteins revealed that CpORP1 and CpORP2 could specifically bind to phosphatidic acid (PA), various phosphatidylinositol phosphates (PIPs), and sulfatide, but not to other types of lipids with simple heads. Cholesterol was not a ligand for these two proteins. CpOPR1 was found mainly on the parasitophorous vacuole membrane (PVM), suggesting that CpORP1 is probably involved in the lipid transport across this unique membrane barrier between parasites and host intestinal lumen. Although Cryptosporidium has two ORPs, other apicomplexans including Plasmodium, Toxoplasma, and Eimeria possess only a single long-type ORP, suggesting that this family of proteins may play different roles among apicomplexans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号