首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylinositol 3-kinase (PI3K) promotes cell survival and communication by activating its downstream effector Akt kinase. Here we show that PS1, a protein involved in familial Alzheimer's disease (FAD), promotes cell survival by activating the PI3K/Akt cell survival signaling. This function of PS1 is unaffected by gamma-secretase inhibitors. Pharmacological and genetic evidence indicates that PS1 acts upstream of Akt, at or before PI3K kinase. PS1 forms complexes with the p85 subunit of PI3K and promotes cadherin/PI3K association. Furthermore, conditions that inhibit this association prevent the PS1-induced PI3K/Akt activation, indicating that PS1 stimulates PI3K/Akt signaling by promoting cadherin/PI3K association. By activating PI3K/Akt signaling, PS1 promotes phosphorylation/inactivation of glycogen synthase kinase-3 (GSK-3), suppresses GSK-3-dependent phosphorylation of tau at residues overphosphorylated in AD and prevents apoptosis of confluent cells. PS1 FAD mutations inhibit the PS1-dependent PI3K/Akt activation, thus promoting GSK-3 activity and tau overphosphorylation at AD-related residues. Our data raise the possibility that PS1 may prevent development of AD pathology by activating the PI3K/Akt signaling pathway. In contrast, FAD mutations may promote AD pathology by inhibiting this pathway.  相似文献   

2.
3.
The contribution of zinc-mediated neuronal death in the process of both acute and chronic neurodegeneration has been increasingly appreciated. Phosphatase and tensin homologue, deleted on chromosome 10 (PTEN), the major tumor suppressor and key regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, plays a critical role in neuronal death in response to various insults. NEDD4-1-mediated PTEN ubiquitination and subsequent degradation via the ubiquitin proteosomal system have recently been demonstrated to be the important regulatory mechanism for PTEN in several cancer types. We now demonstrate that PTEN is also the key mediator of the PI3K/Akt pathway in the neuronal response to zinc insult. We used primary cortical neurons and neuroblastoma N2a cells to show that zinc treatment results in a reduction of the PTEN protein level in parallel with increased NEDD4-1 gene/protein expression. The reduced PTEN level is associated with an activated PI3K pathway as determined by elevated phosphorylation of both Akt and GSK-3 as well as by the attenuating effect of a specific PI3K inhibitor (wortmannin). The reduction of PTEN can be attributed to increased protein degradation via the ubiquitin proteosomal system, as we show NEDD4-1 to be the major E3 ligase responsible for PTEN ubiquitination in neurons. Moreover, PTEN and NEDD4-1 appear to be able to counter-regulate each other to mediate the neuronal response to zinc. This reciprocal regulation requires the PI3K signaling pathway, suggesting a feedback loop mechanism. This study demonstrates that NEDD4-1-mediated PTEN ubiquitination is crucial in the regulation of PI3K/Akt signaling by PTEN during the neuronal response to zinc, which may represent a common mechanism in neurodegeneration.  相似文献   

4.
Osteoarthritis is characterized by degenerative alterations of articular cartilage including both the degradation of extracellular matrix and the death of chondrocytes. The PI3K/Akt pathway has been demonstrated to involve in both processes. Inhibition of its downstream target NF‐kB reduces the degradation of extracellular matrix via decreased production of matrix metalloproteinases while inhibition of mTOR increased autophagy to reduce chondrocyte death. However, mTOR feedback inhibits the activity of the PI3K/Akt pathway and inhibition of mTOR could result in increased activity of the PI3K/Akt/NF‐kB pathway. We proposed that the use of dual inhibitors of PI3K and mTOR could be a promising approach to more efficiently inhibit the PI3K/Akt pathway than rapamycin or PI3K inhibitor alone and produce better treatment outcome. J. Cell. Biochem. 114: 245–249, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Shi C  Zheng DD  Wu FM  Liu J  Xu J 《Neurochemical research》2012,37(2):298-306
Bilobalide (BB), a sesquiterpenoid extract of Ginkgo biloba leaves, has been demonstrated to have neuroprotective effects. The neuroprotective mechanisms were suggested to be associated with modulation of intracellular signaling cascades such as the phosphatidyl inositol 3-kinase (PI3K) pathway. Since some members of intracellular signalling pathways such as PI3K have been demonstrated to be involved in amyloid precursor protein (APP) processing, the present study investigated whether BB has an influence on the β-secretase-mediated APP cleavage via PI3K-dependent pathway. Using HT22 cells and SAMP8 mice (a senescence-accelerated strain of mice), this study showed that BB treatment reduced generation of two β-secretase cleavage products of APP, the amyloid β-peptide (Aβ) and soluble APPβ (sAPPβ), via PI3K-dependent pathway. Additionally, glycogen synthase kinase 3β (GSK3β) signaling might be involved in BB-induced Aβ reduction as a downstream target of the activated PI3K pathway. BB showed no significant effects on β-site APP cleaving enzyme 1 (BACE-1) or γ-secretase but inhibited the β-secretase activity of another protease cathepsin B, suggesting that BB-induced Aβ reduction was probably mediated through modulation of cathepsin B rather than BACE-1. Similarly, inhibition of GSK3β did not affect BACE-1 activity but decreased cathepsin B activity, suggesting that the PI3K-GSK3β pathway was probably involved in BB-induced Aβ reduction. Increasing evidence suggests that decreasing Aβ production in the brain via modulation of APP metabolism should be beneficial for the prevention and treatment of Alzheimer’s disease (AD). BB may offer such an approach to combat AD.  相似文献   

6.
Senescence-accelerated mouse strains have proved to be an accelerated-aging model, which mimics numerous features with Alzheimer's disease (AD). Three, six, and nine-month senescence-accelerated resistant 1 and senescence-accelerated prone 8 (SAMP8) mice were used in the current study, to unravel potential mechanisms for dementia and explore new diagnostic approaches for AD. The amyloid-β (Aβ40) and Aβ42 levels were elevated in hippocampi and platelets from SAMP8, along with a reduced α-secretase expression and an enhanced β-secretase expression extent with age, compared to control mice. Furthermore, hippocampal Aβ40 and Aβ42 of SAMP8 were positively correlated with platelet of these mice with aging progression. In addition, β-γ-secretase-modulated proteolytic proceeding of amyloid precursor protein in platelet might work through the PI3K/Akt/GSK3β pathway. These results indicate that platelet could be a potential early marker in the periphery to study the age-correlative aggregation of the amyloid-β peptide in patients with AD, while still requiring the considerable study.  相似文献   

7.
Phosphatidylinositol 4‐phosphate 5‐kinase (PIP5K) family members generate phosphatidylinositol 4,5‐bisphosphate (PIP2), a critical lipid regulator of diverse physiological processes. The PIP5K‐dependent PIP2 generation can also act upstream of the oncogenic phosphatidylinositol 3‐kinase (PI3K)/Akt pathway. Many studies have demonstrated various mechanisms of spatiotemporal regulation of PIP5K catalytic activity. However, there are few studies on regulation of PIP5K protein stability. Here, we examined potential regulation of PIP5Kα, a PIP5K isoform, via ubiquitin‐proteasome system, and its implication for breast cancer. Our results showed that the ubiquitin ligase NEDD4 (neural precursor cell expressed, developmentally down‐regulated gene 4) mediated ubiquitination and proteasomal degradation of PIP5Kα, consequently reducing plasma membrane PIP2 level. NEDD4 interacted with the C‐terminal region and ubiquitinated the N‐terminal lysine 88 in PIP5Kα. In addition, PIP5Kα gene disruption inhibited epidermal growth factor (EGF)‐induced Akt activation and caused significant proliferation defect in breast cancer cells. Notably, PIP5Kα K88R mutant that was resistant to NEDD4‐mediated ubiquitination and degradation showed more potentiating effects on Akt activation by EGF and cell proliferation than wild‐type PIP5Kα. Collectively, these results suggest that PIP5Kα is a novel degradative substrate of NEDD4 and that the PIP5Kα‐dependent PIP2 pool contributing to breast cancer cell proliferation through PI3K/Akt activation is negatively controlled by NEDD4.  相似文献   

8.
Ribosomal protein S6 kinase plays a critical role in the regulation of cell growth and energy metabolism. S6K belongs to the AGC family of serine/threonine kinases and is a downstream effector of the mTOR and PI3K signalling pathways. The activity and subcellular localisation of S6K are tightly controlled by phosphorylation/dephosphorylation events. We have recently demonstrated that steady-state levels of S6K isoforms, S6K1 and S6K2, are regulated by ubiquitination-mediated proteasomal degradation. In this study, we report for the first time that the ubiquitination status of S6K isoforms is coordinated by signalling pathways induced by mitogenic stimuli and extracellular stresses. The induction of signal transduction by serum and growth factors significantly increases the level of S6K ubiquitination, while the treatment of cells with UV and staurosporine has the opposite effect. Furthermore, we found that the phosphorylation/activation of S6Ks does not correlate directly with the induction of their ubiquitination in response to diverse cellular stimuli. This study suggests that the ubiquitination and subsequent proteasomal degradation of S6K are controlled by signalling pathways, which could possibly facilitate their association with the components of the ubiquitination machinery.  相似文献   

9.
In multiple myeloma, the Akt/PI3K pathway is involved in the proliferation of myeloma cells. In the current study, we have investigated the impact of the CD45 phosphatase in the control of Akt/PI3K activation. We show that Akt activation in response to insulin-like growth factor-1 (IGF-1) is highly variable from one human myeloma cell line to another one. Actually, Akt activation is highly related to whether CD45 is expressed or not. Indeed, both the magnitude and the duration of Akt phosphorylation in response to IGF-1 are more important in CD45- than in CD45+ myeloma cell lines. We next demonstrate a physical association between CD45 and IGF-1 receptor (IGF-1R) suggesting that CD45 could be involved in the dephosphorylation of the IGF-1R. Furthermore, the growth of CD45- myeloma cell lines is mainly or even totally controlled by the PI3K pathway whereas that of CD45+ myeloma cell lines is modestly controlled by it. Indeed, wortmannin, a specific PI3K inhibitor, induced a dramatic growth inhibition in the CD45- myeloma cell lines characterized by a G1 growth arrest, whereas it has almost no effect on CD45+ myeloma cell lines. Altogether, these results suggest that CD45 negatively regulates IGF-1-dependent activation of PI3K. Thus, strategies that block IGF-1R signaling and consequently the Akt/PI3K pathway could be a priority in the treatment of patients with multiple myeloma, especially those lacking CD45 expression that have a very poor clinical outcome.  相似文献   

10.
11.
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta   总被引:1,自引:0,他引:1  
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.  相似文献   

12.
13.
Haploinsufficiency of Eya1 causes the branchio-oto-renal (BOR) syndrome, and abnormally high levels of Eya1 are linked to breast cancer progression and poor prognosis. Therefore, regulation of Eya1 activity is key to its tissue-specific functions and oncogenic activities. Here, we show that Eya1 is posttranslationally modified by ubiquitin and that its ubiquitination level is self-limited to prevent premature degradation. Eya1 has an evolutionarily conserved CDC4 phosphodegron (CPD) signal, a target site of glycogen synthase kinase 3 (GSK3) kinase and Fbw7 ubiquitin ligase, which is required for Eya1 ubiquitination. Genetic deletion of Fbw7 and pharmacological inhibition of GSK3 significantly decrease Eya1 ubiquitination. Conversely, activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the canonical Wnt signal suppresses Eya1 ubiquitination. Compound Eya1+/−; Wnt9b+/− mutants exhibit an increased penetrance of renal defect, indicating that they function in the same genetic pathway in vivo. Together, these findings reveal that the canonical Wnt and PI3K/Akt signal pathways restrain the GSK3/Fbw7-dependent Eya1 ubiquitination, and they further suggest that dysregulation of this novel axis contributes to tumorigenesis.  相似文献   

14.
15.
Growth factor receptors promote cell growth and survival by stimulating the activities of phosphatidylinositol 3-kinase and Akt/PKB. Here we report that Akt activation causes proteasomal degradation of substrates that control cell growth and survival. Expression of activated Akt triggered proteasome-dependent declines in the protein levels of the Akt substrates tuberin, FOXO1, and FOXO3a. The addition of proteasome inhibitors stabilized the phosphorylated forms of multiple Akt substrates, including tuberin and FOXO proteins. Activation of Akt triggered the ubiquitination of several proteins containing phosphorylated Akt substrate motifs. Together the data indicate that activated Akt stimulates proteasomal degradation of its substrates and suggest that Akt-dependent cell growth and survival are induced through the degradation of negative regulators of these processes.  相似文献   

16.
17.
Increasing evidence suggests that aberrant activation of PI3K/Akt is involved in many human cancers, and that inhibition of the PI3K/Akt pathway might be a promising strategy for cancer treatment. Our investigation indicates that Rhabdastrellic acid-A, an isomalabaricane triterpenoid isolated from the sponge, Rhabdastrella globostellata, inhibits proliferation of HL-60 cells with an IC(50) value of 0.68mug/ml, and induces apoptosis. Rhabdastrellic acid-A also induces cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and caspase-3. Pretreatment of HL-60 cells with the caspase-3 specific inhibitor, DEVD-CHO, prevents Rhabdastrellic acid-A-induced DNA fragmentation and PARP cleavage. Activated PI3K and Akt significantly decreases after treatment with Rhabdastrellic acid-A in HL-60 cells. Expression levels of protein bcl-2, bax remain unchanged in response to Rhabdastrellic acid-A treatment in HL-60 cells. These results suggest that Rhabdastrellic acid-A inhibits PI3K/Akt pathway and induces caspase-3 dependent-apoptosis in HL-60 human leukemia cells.  相似文献   

18.
Parkin mediates the degradation-independent ubiquitination of Hsp70   总被引:2,自引:0,他引:2  
Mutations in the parkin gene cause autosomal recessive, juvenile-onset parkinsonism. Parkin is an E3 ubiquitin ligase that mediates the ubiquitination of protein substrates. Disease-associated mutations cause a loss-of-function of parkin which may compromise the poly-ubiquitination and proteasomal degradation of specific protein substrates, potentially leading to their deleterious accumulation. Here, we identify the molecular chaperones, Hsp70 and Hsc70, as substrates for parkin. Parkin mediates the ubiquitination of Hsp70 both in vitro and in cultured cells. Parkin interacts with Hsp70 via its second RING finger domain and mutations in/near this domain compromise Hsp70 ubiquitination. Ubiquitination of Hsp70 fails to alter its steady-state levels or turnover, nor does it promote its proteasomal degradation. Consistent with this observation, Hsp70 levels remain unaltered in brains from parkin-deficient autosomal recessive, juvenile-onset parkinsonism subjects, whereas alternatively, Hsp70 levels are elevated in the detergent-insoluble fraction of sporadic Parkinson's disease/dementia with Lewy bodies brains. Parkin mediates the multiple mono-ubiquitination of Hsp70/Hsc70 consistent with a degradation-independent role for this ubiquitin modification. Our observations support a novel functional relationship between parkin and Hsc/Hsp70 and support the notion that parkin is a multi-purpose E3 ubiquitin ligase capable of modifying proteins either via attachment of alternatively linked poly-ubiquitin chains or through multiple mono-ubiquitination to achieve alternate biological outcomes.  相似文献   

19.
Neurotrophins, activating the PI3K/Akt signaling pathway, control neuronal survival and plasticity. Alterations in NGF, BDNF, IGF-1, or insulin signaling are implicated in the pathogenesis of Alzheimer disease. We have previously characterized a bigenic PS1×APP transgenic mouse displaying early hippocampal Aβ deposition (3 to 4 months) but late (17 to 18 months) neurodegeneration of pyramidal cells, paralleled to the accumulation of soluble Aβ oligomers. We hypothesized that PI3K/Akt/GSK-3β signaling pathway could be involved in this apparent age-dependent neuroprotective/neurodegenerative status. In fact, our data demonstrated that, as compared with age-matched nontransgenic controls, the Ser-9 phosphorylation of GSK-3β was increased in the 6-month PS1×APP hippocampus, whereas in aged PS1×APP animals (18 months), GSK-3β phosphorylation levels displayed a marked decrease. Using N2a and primary neuronal cell cultures, we demonstrated that soluble amyloid precursor protein-α (sAPPα), the predominant APP-derived fragment in young PS1×APP mice, acting through IGF-1 and/or insulin receptors, activated the PI3K/Akt pathway, phosphorylated the GSK-3β activity, and in consequence, exerted a neuroprotective action. On the contrary, several oligomeric Aβ forms, present in the soluble fractions of aged PS1×APP mice, inhibited the induced phosphorylation of Akt/GSK-3β and decreased the neuronal survival. Furthermore, synthetic Aβ oligomers blocked the effect mediated by different neurotrophins (NGF, BDNF, insulin, and IGF-1) and sAPPα, displaying high selectivity for NGF. In conclusion, the age-dependent appearance of APP-derived soluble factors modulated the PI3K/Akt/GSK-3β signaling pathway through the major neurotrophin receptors. sAPPα stimulated and Aβ oligomers blocked the prosurvival signaling. Our data might provide insights into the selective vulnerability of specific neuronal groups in Alzheimer disease.  相似文献   

20.
该文探讨了乳腺癌细胞中表皮生长因子(EGF)介导的MEK非依赖性ERK激活通路。Western blot检测EGF刺激下,siRNA抑制MEK1/2后的T47D细胞的p-ERK水平,以验证T47D细胞中存在EGF介导的MEK非依赖性ERK激活的通路。接着使用可能参与MEK非依赖性ERK激活的激酶的小分子抑制剂抑制相关激酶(AC、PKC、Src、PI3K、PDK1和Akt)活性后,检测T47D细胞EGF介导ERK的磷酸化水平。siRNA抑制MEK1/2表达后,T47D细胞在EGF刺激后的仍保留部分p-ERK,即在T47D细胞中,存在EGF介导的MEK非依赖性的ERK磷酸化通路。小分子抑制剂抑制AC、PKC、Src对MEK非依赖性ERK激活途径影响不大。而使用小分子抑制剂抑制PI3K、PDK1和Akt后,ERK的磷酸化水平显著降低,提示PI3K/Akt通路下游的激酶参与T47D中EGF介导的MEK非依赖性ERK激活途径。siRNA干扰PI3K/Akt通路下游PBK/TOPK后并使用U0126抑制MEK功能后,几乎检测不到p-ERK,提示PBK/TOPK参与T47D细胞中EGF介导的MEK非依赖性ERK激活途径。乳腺癌抗雌激素药物耐药株T47D细胞存在EGF介导的MEK非依赖性ERK激活途径,且该途径受PI3K/Akt下游的PBK/TOPK调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号