首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report the high-resolution detail of the organization of phycobiliprotein structures associated with photosynthetic membranes of the chlorophyll d-containing cyanobacterium Acaryochloris marina. Cryo-electron transmission-microscopy on native cell sections show extensive patches of near-crystalline phycobiliprotein rods that are associated with the stromal side of photosynthetic membranes. This supramolecular photosynthetic structure represents a novel mechanism of organizing the photosynthetic light-harvesting machinery. In addition, the specific location of phycobiliprotein patches suggests a physical separation of photosystem I and photosystem II reaction centres. Based on this finding and the known photosystem’s structure in Acaryochloris, we discuss possible membrane arrangements of photosynthetic membrane complexes in this species.  相似文献   

2.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

3.
The ultrafast (< 100 fs) conversion of delocalized exciton into charge-separated state between the primary donor P700 (bleaching at 705 nm) and the primary acceptor A0 (bleaching at 690 nm) in photosystem I (PS I) complexes from Synechocystis sp. PCC 6803 was observed. The data were obtained by application of pump-probe technique with 20-fs low-energy pump pulses centered at 720 nm. The earliest absorbance changes (close to zero delay) with a bleaching at 690 nm are similar to the product of the absorption spectrum of PS I complex and the laser pulse spectrum, which represents the efficiency spectrum of the light absorption by PS I upon femtosecond excitation centered at 720 nm. During the first ∼ 60 fs the energy transfer from the chlorophyll (Chl) species bleaching at 690 nm to the Chl bleaching at 705 nm occurs, resulting in almost equal bleaching of the two forms with the formation of delocalized exciton between 690-nm and 705-nm Chls. Within the next ∼ 40 fs the formation of a new broad band centered at ∼ 660 nm (attributed to the appearance of Chl anion radical) is observed. This band decays with time constant simultaneously with an electron transfer to A1 (phylloquinone). The subtraction of kinetic difference absorption spectra of the closed (state P700+A0A1) PS I reaction center (RC) from that of the open (state P700A0A1) RC reveals the pure spectrum of the P700+A0 ion-radical pair. The experimental data were analyzed using a simple kinetic scheme: An* [(PA0)*A1 P+A0A1] P+A0A1, and a global fitting procedure based on the singular value decomposition analysis. The calculated kinetics of transitions between intermediate states and their spectra were similar to the kinetics recorded at 694 and 705 nm and the experimental spectra obtained by subtraction of the spectra of closed RCs from the spectra of open RCs. As a result, we found that the main events in RCs of PS I under our experimental conditions include very fast (< 100 fs) charge separation with the formation of the P700+A0A1 state in approximately one half of the RCs, the ∼ 5-ps energy transfer from antenna Chl* to P700A0A1 in the remaining RCs, and ∼ 25-ps formation of the secondary radical pair P700+A0A1.  相似文献   

4.
The role of fatty acid synthesis in the acclimation of the photosynthetic machinery to high temperature was investigated in a mutant of the cyanobacterium Synechocystis sp. PCC 6803 that had a lower than wild-type level of enoyl-(acyl-carrier-protein) reductase FabI, a key component of the type-II fatty acid synthase system. The mutant exhibited marked impairment in the tolerance and acclimation of cells to high temperature: photoautotrophic growth of the mutant was severely inhibited at 40 °C. Moreover, mutant cells were unable to achieve wild-type enhancement of the thermal stability of photosystem II (PSII) when the growth temperature was raised from 25 °C to 38 °C. Enhancement of the thermal stability of PSII was abolished when wild-type cells were treated with triclosan, a specific inhibitor of FabI, and the enhancement of thermal stability was also blocked in darkness and in the presence of chloramphenicol. Analysis of fatty acids in thylakoid membranes revealed that levels of unsaturated fatty acids did not differ between mutant and wild-type cells, indicating that the saturation of fatty acids in membrane lipids might not be responsible for the enhancement of thermal stability at elevated temperatures. Our observations suggest that the synthesis de novo of fatty acids, as well as proteins, is required for the enhancement of the thermal stability of PSII during the acclimation of Synechocystis cells to high temperature.  相似文献   

5.
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P+Q, between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (QA). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, ChlD1. It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.  相似文献   

6.
We generated Synechocystis sp. PCC 6803 strains, designated F-His and J-His, which express histidine-tagged PsaF and PsaJ subunits, respectively, for simple purification of the photosystem I (PSI) complex. Six histidine residues were genetically added to the C-terminus of the PsaF subunit in F-His cells and the N-terminus of the PsaJ subunit in J-His cells. The histidine residues introduced had no apparent effect on photoautotrophic growth of the cells or the activity of PSI and PSII in thylakoid membranes. PSI complexes could be simply purified from the F-His and J-His cells by Ni2+-affinity column chromatography. When thylakoid membranes corresponding to 20 mg chlorophyll were used, PSI complexes corresponding to about 7 mg chlorophyll could be purified in both strains. The purified PSI complexes could be separated into monomers and trimers by ultracentrifugation in glycerol density gradient and high activity was recorded for trimers isolated from the F-His and J-His strains. Blue-Native PAGE and SDS-PAGE analysis of monomers and trimers indicated the existence of two distinct monomers with different subunit compositions and no contamination of PSI with other complexes, such as PSII and Cyt b6f. Further analysis of proteins and lipids in the purified PSI indicated the presence of novel proteins in the monomers and about six lipid molecules per monomer unit in the trimers. These results demonstrate that active PSI complexes can be simply purified from the constructed strains and the strains are very useful tools for analysis of PSI.  相似文献   

7.
Geranylgeranyl reductase catalyses the reduction of geranylgeranyl pyrophosphate to phytyl pyrophosphate required for synthesis of chlorophylls, phylloquinone and tocopherols. The gene chlP (ORF sll1091) encoding the enzyme has been inactivated in the cyanobacterium Synechocystis sp. PCC 6803. The resulting ΔchlP mutant accumulates exclusively geranylgeranylated chlorophyll a instead of its phytylated analogue as well as low amounts of α-tocotrienol instead of α-tocopherol. Whereas the contents of chlorophyll and total carotenoids are decreased, abundance of phycobilisomes is increased in ΔchlP cells. The mutant assembles functional photosystems I and II as judged from 77 K fluorescence and electron transport measurements. However, the mutant is unable to grow photoautotrophically due to instability and rapid degradation of the photosystems in the absence of added glucose. We suggest that instability of the photosystems in ΔchlP is directly related to accumulation of geranylgeranylated chlorophyll a. Increased rigidity of the chlorophyll isoprenoid tail moiety due to three additional CC bonds is the likely cause of photooxidative stress and reduced stability of photosynthetic pigment-protein complexes assembled with geranylgeranylated chlorophyll a in the ΔchlP mutant.  相似文献   

8.
Dmitrii Vavilin 《BBA》2007,1767(7):920-929
Chlorophyll synthesis and degradation were analyzed in the cyanobacterium Synechocystis sp. PCC 6803 by incubating cells in the presence of 13C-labeled glucose or 15N-containing salts. Upon mass spectral analysis of chlorophyll isolated from cells grown in the presence of 13C-glucose for different time periods, four chlorophyll pools were detected that differed markedly in the amount of 13C incorporated into the porphyrin (Por) and phytol (Phy) moieties of the molecule. These four pools represent (i) unlabeled chlorophyll (12Por12Phy), (ii) 13C-labeled chlorophyll (13Por13Phy), and (iii, iv) chlorophyll, in which either the porphyrin or the phytol moiety was 13C-labeled, whereas the other constituent of the molecule remained unlabeled (13Por12Phy and 12Por13Phy). The kinetics of 12Por12Phy disappearance, presumably due to chlorophyll de-esterification, and of 13Por12Phy, 12Por13Phy, and 13Por13Phy accumulation due to chlorophyll synthesis provided evidence for continuous chlorophyll turnover in Synechocystis cells. The loss of 12Por12Phy was three-fold faster in a photosystem I-less strain than in a photosystem II-less strain and was accelerated in wild-type cells upon exposure to strong light. These data suggest that most chlorophyll appears to be de-esterified in Synechocystis upon dissociation and repair of damaged photosystem II. A substantial part of chlorophyllide and phytol released upon the de-esterification of chlorophyll can be recycled for the biosynthesis of new chlorophyll molecules contributing to the formation of 13Por12Phy and 12Por13Phy chlorophyll pools. The phytol kinase, Slr1652, plays a significant but not absolutely critical role in this recycling process.  相似文献   

9.
Rates of chlorophyll synthesis and degradation were analyzed in Synechocystis sp. PCC 6803 wild type and mutants lacking one or both photosystems by labeling cells with (15NH4)2SO4 and Na15NO3. Pigments extracted from cells were separated by HPLC and incorporation of the 15N label into porphyrins was subsequently examined by MALDI-TOF mass spectrometry. The life time (τ) of chlorophyll in wild-type Synechocystis grown at a light intensity of 100 μmol photons m−2 s−1 was determined to be about 300 h, much longer than the cell doubling time of about 14 h. Slow chlorophyll degradation (τ ∼200-400 h) was also observed in Photosystem I-less and in Photosystem II-less Synechocystis mutants, whereas in a mutant lacking both Photosystem I and Photosystem II chlorophyll degradation was accelerated 4-5 fold (τ ∼50 h). Chlorophyllide and pheophorbide were identified as intermediates of chlorophyll degradation in the Photosystem I-less/Photosystem II-less mutant. In comparison with the wild type, the chlorophyll synthesis rate was five-fold slower in the Photosystem I-less strain and about eight-fold slower in the strain lacking both photosystems, resulting in different chlorophyll levels in the various mutants. The results presented in this paper demonstrate the presence of a regulation that adjusts the rate of chlorophyll synthesis according to the needs of chlorophyll-binding polypeptides associated with the photosystems.  相似文献   

10.
Chlorophyll (Chl) a in a cyanobacterium Synechocystis sp. PCC 6803 was replaced with di-vinyl (DV)-Chl a by knock-out of the specific gene (slr1923), responsible for the reduction of a 8-vinyl group, and optical and photochemical properties of purified photosystem (PS) II complexes (DV-PS II) were investigated. We observed differences in the peak wavelengths of absorption and fluorescence spectra; however, replacement of Chl a with DV-Chl a had limited effects. On the contrary, photochemical reactions were highly sensitive to high-light treatments in the mutant. Specifically, DV-Chl a was rapidly bleached under high-light conditions, and we detected significant dissociation of complexes and degradation of D1 proteins (PsbA). By comparing the SDS-PAGE patterns observed in this study to those observed in spinach chloroplasts, this degradation is assigned to the acceptor-side photoinhibition. The delayed fluorescence in the nanosecond time region at 77 K was suppressed in DV-PS II, possibly increasing triplet formation of Chl molecules. Our findings provide insight into the evolutionary processes of cyanobacteria. The effects of pigment replacement on the optimization of reactions are discussed.  相似文献   

11.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

12.
By using absorption and fluorescence spectroscopy, we compared the effects of heat and light treatments on the phycobilisome (PBS) antenna of Synechocystis sp. PCC 6803 cells. Fluorescence emission spectra obtained upon exciting predominantly PBS, recorded at 25 °C and 77 K, revealed characteristic changes upon heat treatment of the cells. A 5-min incubation at 50 °C, which completely inactivated the activity of photosystem II, led to a small but statistically significant decrease in the F680/F655 fluorescence intensity ratio. In contrast, heat treatment at 60 °C resulted in a much larger decrease in the same ratio and was accompanied by a blue-shift of the main PBS emission band at around 655 nm (F655), indicating an energetic decoupling of PBS from chlorophylls and reorganizations in its internal structure. (Upon exciting PBS, F680 originates from photosystem II and from the terminal emitter of PBS.). Very similar changes were obtained upon exposing the cells to high light (600-7500 μmol photons m−2 s−1) for different time periods (10 min to 3 h). In cells with heat-inactivated photosystem II, the variations caused by light treatment could clearly be assigned to a similar energetic decoupling of the PBS from the membrane and internal reorganizations as induced at around 60 °C. These data can be explained within the frameworks of thermo-optic mechanism [Cseh et al. 2000, Biochemistry 39, 15250]: in high light the heat packages originating from dissipation might lead to elementary structural changes in the close vicinity of dissipation in heat-sensitive structural elements, e.g. around the site where PBS is anchored to the membrane. This, in turn, brings about a diminishment in the energy supply from PBS to the photosystems and reorganization in the molecular architecture of PBS.  相似文献   

13.
Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ΔsigCDE contains the stress responsive SigB as the only functional group 2 σ factor. The ?sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ?sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ?sigCDE than in the control strain. These results indicate that ?sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ?sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ?sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ?sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ?sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required.  相似文献   

14.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

15.
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures — from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 μmol photons m− 2 s− 1. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

16.
Cyanobacteria are capable of using dissipation of phycobilisome-absorbed energy into heat as part of their photoprotective strategy. Non-photochemical quenching in cyanobacteria cells is triggered by absorption of blue-green light by the carotenoid-binding protein, and involves quenching of phycobilisome fluorescence. In this study, we find direct evidence that the quenching is accompanied by a considerable reduction of energy flow to the photosystems. We present light saturation curves of photosystems’ activity in quenched and non-quenched states in the cyanobacterium Synechocystis sp. PCC 6803. In the quenched state, the quantum efficiency of light absorbed by phycobilisomes drops by about 30-40% for both photoreactions—P700 photooxidation in the photosystem II-less strain and photosystem II fluorescence induction in the photosystem I-less strain of Synechocystis. A similar decrease of the excitation pressure on both photosystems leads us to believe that the core-membrane linker allophycocyanin APC-LCM is at or beyond the point of non-photochemical quenching. We analyze 77 K fluorescence spectra and suggest that the quenching center is formed at the level of the short-wavelength allophycocyanin trimers. It seems that both chlorophyll and APC-LCM may dissipate excess energy via uphill energy transfer at physiological temperatures, but neither of the two is at the heart of the carotenoid-binding protein-dependent non-photochemical quenching mechanism.  相似文献   

17.
Sigal Shcolnick  Nir Keren 《BBA》2007,1767(6):814-819
The mrgA protein of the cyanobacterium Synechocystis sp. PCC6803 is a member of the DPS Fe storage protein family. The physiological role of this protein was studied using a disruption mutant in the mrgA gene (slr1894) and by measuring intracellular Fe quotas, 77K chlorophyll fluorescence and growth rates. It was found that the deletion of the mrgA gene did not impair the Fe storage capacity, as the intracellular Fe quotas of the ΔmrgA cells were comparable to those of the wild type. Furthermore, the cellular response to decreasing external Fe concentrations, as detected by the emergence of the CP43′ 77K fluorescence band, was similar in wild type and mutant cultures. On the other hand, a considerable slow down in the growth rate of ΔmrgA cultures was observed upon transfer from Fe replete to Fe depleted medium, indicating impeded utilization of the plentiful intracellular Fe. Based on these results, we suggest that mrgA plays an important role in the transport of intracellular Fe from storage (within bacterioferritins) to biosynthesis of metal cofactors throughout the cell's growth.  相似文献   

18.
Robert van Lis  Ariane Atteia 《BBA》2005,1708(1):23-34
Compelling evidence exists that the colorless algae of the genus Polytomella arose from a green Chlamydomonas-like ancestor by losing its functional photosynthetic apparatus. Due to the close relationship between the colorless and the green chlorophyte, Polytomella sp. appeared as a useful indicative framework for structural studies of Chlamydomonas reinhardtii mitochondria. However, comparative studies reported here unexpectedly revealed significant differences between the mitochondrial respiratory systems of the two algae. Two-dimensional blue native/SDS-PAGE of isolated mitochondria indicated that cytochrome-containing respiratory complexes III and IV in the two chlorophytes contrast in size, subunit composition and relative abundance. Complex IV in Polytomella is smaller than its counterpart in C. reinhardtii and occurs in two forms that differ presumably in the presence of subunit COXIII. The cytochrome c and the iron-sulfur Rieske protein of both chlorophytes revealed structural differences on the amino acid sequence level. Under comparable culture conditions, the colorless alga exhibits lower levels of cytochrome c and complex IV but a higher respiratory activity than the green alga. Cytochrome c levels were also found to be differently regulated by the growth conditions in both algae. The divergence between the respiratory systems in the two related chlorophytes can be viewed as a consequence of the loss of photosynthetic activity and/or of the adaptation to the environment via the acquisition of a more flexible, heterotrophic metabolism. Our understanding of mitochondrial function and evolution is expected to be greatly enhanced via further parallel studies of photosynthetic/non-photosynthetic algae, for which this study forms an incentive.  相似文献   

19.
We characterized certain physiological functions of cyanobacterial monoglucosyldiacylglycerol using a Synechocystis sp. PCC 6803 mutant in which the gene for monoglucosyldiacylglycerol synthase had been disrupted and its function complemented by inclusion of an Arabidopsis monogalactosyldiacylglycerol synthase gene. By using this method, we prepared the first viable monoglucosyldiacylglycerol-deficient mutant of cyanobacterium and found that monoglucosyldiacylglycerol is not essential for its growth and photosynthesis under a set of “normal growth conditions” when monogalactosyldiacylglycerol is adequately supplied by the Arabidopsis monogalactosyldiacylglycerol synthase. The mutant had healthy thylakoid membranes and normal pigment content. The membrane lipid composition of the mutant was similar with that of WT except lack of monoglucosyldiacylglycerol and a slight increase in the level of phosphatidylglycerol at both normal and low temperatures. However, the ratio of unsaturated fatty acids in monogalactosyldiacylglycerol and digalactosyldiacylglycerol was reduced in the mutant compared with WT. Although the growth of the mutant was indistinguishable with that of WT at normal growth temperature, it was markedly retarded at low temperature compared with that of WT. Our data indicated the possibility that cyanobacterial monogalactosyldiacylglycerol-synthesis pathway might be required for the adequate unsaturation level of fatty acids in galactolipids and affect the low-temperature sensitivity.  相似文献   

20.
The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem (PS) II functions by harvesting light energy and by limiting and balancing the energy flow directed towards the PSI and PSII reaction centers. The complex is predominantly trimeric; however, the monomeric form may play a role in one or several of the regulatory functions of LHCIIb. In this work the dissociation temperature was measured of trimeric LHCIIb isolated from Pisum thylakoids and inserted into liposomes made of various combinations of thylakoid lipids at various protein densities. Dissociation was measured by monitoring a trimer-specific circular dichroism signal in the visible range. The LHCIIb density in the membrane significantly affected the trimer dissociation temperature ranging from 70 °C at an LHCIIb concentration comparable to or higher than the one in thylakoid grana, to 65 °C at the density estimated in stromal lamellae. Omitting one thylakoid lipid from the liposomes had virtually no effect on the thermal trimer stability in most cases except when digalactosyl diacylglycerol (DGDG) was omitted which caused a drop in the apparent dissociation temperature by 2 °C. In liposomes containing only one lipid species, DGDG and, even more so, monogalactosyl diacylglycerol (MGDG) increased the thermal stability of LHCIIb trimers whereas phosphatidyl diacylglycerol (PG) significantly decreased it. The lateral pressure exerted by the non-bilayer lipid MGDG did not significantly influence LHCII trimer stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号