首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Three isomers (nongeminal cis-2,4,6 (2); nongeminal trans-2,4,6 (3); geminal 2,2,4 (4)) were isolated from the reaction of hexachlorocyclotriphosphazatriene (trimer) (1) with diethylene glycol monobutyl ether (DEGBE). The substitution reactions of cis-tris isomer (2) with 3-amino-1-propanol were investigated under different solutions conditions to provide amphiphilic phosphazene (5). All of compounds were characterized by using elemental analysis, 31P NMR and mass spectroscopies. Thermosensitive properties of compound 5 were studied. The compound 5 is soluble in both water and organic media. This indicates that compound 5 is an amphiphilic molecule. Concentration-dependent LCST (Lower Critical Solution Temperature) behavior of 5 was measured in water. Compound 5 exhibited a reversible and thermosensitive phase transition in aqueous medium, from soluble to insoluble states. Compound 5 showed LCST at 37 °C (for 7 wt.% concentration) which is near to body temperature.  相似文献   

2.
The phospholipid composition of adult human lens membranes differs dramatically from that of any other mammalian membrane. Due to minimal cell turnover, cells in the nucleus of the human lens may be considered as the longest lived cells in our body. This work reassesses previous assignments of phospholipid 31P NMR resonances in adult human lenses. The new assignments are based not only on chemical shifts but also on temperature coefficients. By addition of known phospholipids and examination by matrix-assisted laser desorption/ionization mass spectrometry, several misassigned resonances have been corrected. The revised composition reveals the possible presence of ceramide-1-phosphate and dihydroceramide-1-phosphate. Among glycerophospholipids, the most abundant one does not correspond to phosphatidylglycerol but may be due to the lysoform of alkyl-acyl analogs of phosphatidylethanolamine. Besides sphingophospholipids, adult human lens membranes contain significant amounts of ether (1-O-alkyl) glycerophospholipids and their corresponding lysoforms.  相似文献   

3.
The partial phase diagram and the hydration properties of the 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)-water system, in the absence and presence of 30 mol% cholesterol, have been investigated by solid state phosphorus NMR of the lipid and deuterium NMR of heavy water. The POPE-D2O phase diagram resembles other phosphatidylethanolamine (PE)-water systems: below water-to-lipid molar ratios (Ri) of 3 the lamellar gel (L or Lc)-to-hexagonal type II (HII) phase sequence is observed on increasing the temperature. For Ri3 the thermotropic sequence (L or Lc)-L-HII is detected. On increasing hydration from Ri=3, the HII phase is detected from 40°C to 85°C whereas the gel phase is observed from 40°C to 30°C. The limiting hydrations of the gel, L and HII phases are Ri 3, 17 and 20, respectively. The number of bound water molecules per lipid is ca. 8 in both the La and HII phases. The presence of cholesterol stabilizes the hexagonal phase 20°C below temperatures at which it is observed in its absence and reduces the limiting hydration of the fluid and hexagonal phases to Ri 9 and 14, respectively. The structure and/or dynamics of the water bound to the interface are markedly modified on going from the L to the HII phase.Abbreviations NMR Nuclear magnetic resonance - DDPE 1,2-Didodecyl-rac-glycerol-3-phosphoethanol-amine - DHPE 1,2-Dihexadecyl-sn-glycerol-3-phosphoethanol-amine - DOPE 1,2-Dioleoyl-sn-glycerol-3-phosphoethanol-amine - POPE 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoetha-nolamine - DAPE 1,2-Diarachinoyl-sn-glycerol-3-phosphoethanol-amine - DMPC 1,2-Dimyristol-sn-glycerol-3-phosphocholine - DPPC 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine - Tc lamellar gel-to-lamellar fluid transition temperature - Th lamellar fluid-to-hexagonal transition temperature  相似文献   

4.
Abstract

The interactions of a water-soluble nonmembrane protein aprotinin with multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) from soybean phospholipids were studied using Sephadex G-75 gel chromatography combined with different methods of the analysis of the eluate fractions (fluorescence, light-scattering, turbidity; 31P NMR spectroscopy). The composition of the liposomes mainly containing soybean phosphatidylcholine (PC) was varied by the addition of phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lyso-phosphatidylcholine (lyso-PC). To evaluate the lipid-protein interactions, the amount of aprotinin in the MLV–aprotinin complexes was determined. Lipid–protein interactions were found to strongly depend on the liposome composition, medium pH and ionic strength. These dependencies point to the electrostatic nature of the aprotinin-lipid interactions. 31P NMR spectroscopy of the MLV–aprotinin complexes indicated that aprotinin influences the phospholipid structure in MLV at pH 3.0. In the case of PC:PE:PI and PC:PE:PI:lyso-PC vesicles, aprotinin induced liposome aggregation and a lamellar-to-isotropic phase transition of the phospholipids.  相似文献   

5.
The synthesis, characterisation and solution behaviour of a series of octahedral complexes SnCl4·2L (L = R2NP(O)(OCH2CF3)2; R = Me (1); Et (2) or L = P(O)(OCH2Rf)3; Rf = CF3 (3); C2F5 (4)) are described. Complexes 1-4 were prepared from SnCl4 and 2 equiv. of the ligand, L, in anhydrous CH2Cl2 solution. The adducts have been characterised by multinuclear (1H, 31P and 119Sn) NMR, IR spectroscopy and elemental analysis. In dichloromethane solution, the NMR data showed the presence of a mixture of cis and trans isomers for 1 and 2 and only the cis isomer for 3 and 4. The difference could be interpreted in terms of the electronic effects of the substituents on the phosphorus atom of the ligand. In addition, the solution structure of the complexes studied by variable temperature 31P-{1H} and 1H NMR in the presence of excess ligand indicated that the ligand exchange on the cis isomer dominates the chemistry. The metal-ligand exchange barriers were estimated to be 13.38 and 11.39 kcal/mol for 1 and 3, respectively. The results are discussed and compared with those previously reported for the related hexamethylphosphoramide adduct, SnCl4·2HMPA.  相似文献   

6.
Single crystal X-ray structural characterizations are recorded for an array of adducts of the form AgX:dppf (1:1)(n), X = simple (pseudo-)halide or oxy-anion, ‘dppf’ = bis(diphenyl phosphino)ferrocene, for adducts X = Cl (new phase), Br, I, SCN, OCN, CN, NO3 (new phase), O2CCH3, n = 2, the form being dimeric [(dppf-P,P′)Ag(μ-X)2Ag(P,P′-dppf)], for X = I, SCN, [Ag(μ-X)2(P-dppf-P′)2Ag′]; for X = O2CCF3, n = ∞, the form is an extended polymer: ?Ag(O · CO · CF3)(P-dppf-P′)Ag′(O?. A dichloromethane solvate phase of CuI:dppf (1:1)2 (also centrosymmetric) is also recorded. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR). The topology of the structures in the solid state was found to depend on the nature of the counterion.  相似文献   

7.
The influence of the sulfone drugs, diamino diphenyl sulfone and diamino monophenyl sulfone on the phase transitions and dynamics of dipalmitoyl phosphatidyl choline-H2O/D2O vesicles have been investigated using differential scanning calorimetry and nuclear magnetic resonance. Our results show that diamino diphenyl sulfone interacts quite strongly with the headgroups of dipalmitoyl phosphatidyl choline whereas the diamino monophenyl sulfone-dipalmitoyl phosphatidyl choline interaction is quite weak. This is attributed to the difference in the structure and hydrophobic character of the two drugs.  相似文献   

8.
Phospholipids have long been known to be the principal constituents of the bilayer matrix of cell membranes. While the main function of cell membranes is to provide physical separation between intracellular and extracellular compartments, further biological and biochemical functions for phospholipids have been identified more recently, notably in cell signaling, cell recognition and cell–cell interaction, but also in cell growth, electrical insulation of neurons and many other processes. Therefore, accurate and efficient determination of tissue phospholipid composition is essential for our understanding of biological tissue function. 31P NMR spectroscopy is a quantitative and fast method for analyzing phospholipid extracts from biological samples without prior separation. However, the number of phospholipid classes and subclasses that can be quantified separately and reliably in 31P NMR spectra of tissue extracts is critically dependent on a variety of experimental conditions. Until recently, little attention has been paid to the optimization of phospholipid 31P NMR spectra. This review surveys the basic physicochemical properties that determine the quality of phospholipid spectra, and describes an optimization strategy based on this assessment. Notably, the following experimental parameters need to be controlled for systematic optimization: (1) extract concentration, (2) concentration of chelating agent, (3) pH value of the aqueous component of the solvent system, and (4) temperature of the NMR measurement. We conclude that a multiparametric optimization approach is crucial to obtaining highly predictable and reproducible 31P NMR spectra of phospholipids.  相似文献   

9.
The synthesis and crystal structures of two high valent molybdenum complexes containing trisbenzenethiolatophosphine ligands, [Mo2(PS3)2(PS3H)] (1) and [Mo(PS3″)2] (2), where PS3 = [P(C6H4-2-S)3]3−, PS3H = [P(C6H4-2-S)2(C6H4-2-SH)]2−, and PS3″ = [P(C6H3-3-Me3Si-2-S)3]3−, are described. Compound 1 is a dimeric Mo(IV) species containing three PS3 ligands with an uncoordinated thiol group. An intramolecular hydrogen bonding S-H?S was found in the structure. Two molybdenum ions are bridged by three thiolates. The geometry can be described as two pentagonal bipyramids sharing a triangle face formed by three bridging S atoms. Compound 2 is a Mo(VI) species binding with two tetradentate PS3″ ligands. The eight-coordinate molybdenum center adopts a dodecahedral geometry.  相似文献   

10.
Milk fat globule-EGF-factor 8-L (MFG-E8L) is secreted by activated macrophages and functions as a linker protein or opsonin between the dying cells and phagocytes. MFG-E8L recognizes the apoptotic or dying cells by specifically binding to Phosphatidylserine (PS) exposed on the outer cell surface and enhances the engulfment of the apoptotic cells by phagocytes, thereby preventing the inflammation and autoimmune response against intracellular antigens that can be released from the dying cells. MFG-E8L contains two EGF-like domains, P/T (proline/threonine) rich domain followed by two discoidin-like domains (C1 and C2). Recent studies have shown that the C2 domain of MFG-E8L is specifically involved in interaction with PS exposed on the apoptotic cells. Towards understanding this specific molecular interaction between the MFG-E8L C2 domain and PS, we expressed, purified the C2 domain of MFG-E8L and performed the binding studies with phospholipids by (31)P NMR experiment. We demonstrated that our recombinant construct and expression system were effective and allowed us to obtain the C2 domain and also showed that the purified C2 domain was stable and properly folded, and our (31)P NMR studies indicated that the C2 domain had specific binding with PS.  相似文献   

11.
When proteins require different conformations for their biological function, all these functional states have to coexist simultaneously in solution. However, the corresponding Gibbs free energy differences are usually rather high and thus the conformation with lowest energy predominates in solution whereas the populations of the states with higher energy (excited states) are very small. A stabilization of these excited states can be used as a novel principle to influence the activity of proteins by small molecules. For a proof of this principle, we selected the Ras protein that was shown by (31)P NMR spectroscopy to exist in solution in at least two different conformational states in its GTP form. One of these states shows a drastically reduced affinity to effectors. With Zn(2+)-cyclen we found a small molecule which selectively stabilizes the weak-binding state. It may serve as lead compound for the development of a new type of Ras-inhibitors.  相似文献   

12.
A kinetic comparison of the hydrolase and transferase activities of two bacterial phospholipase D (PLD) enzymes with little sequence homology provides insights into mechanistic differences and also the more general role of Ca(2+) in modulating PLD reactions. Although the two PLDs exhibit similar substrate specificity (phosphatidylcholine preferred), sensitivity to substrate aggregation or Ca(2+), and pH optima are quite distinct. Streptomyces sp. PMF PLD, a member of the PLD superfamily, generates both hydrolase and transferase products in parallel, consistent with a mechanism that proceeds through a covalent phosphatidylhistidyl intermediate where the rate-limiting step is formation of the covalent intermediate. For Streptomyces chromofuscus PLD, the two reactions exhibit different pH profiles, a result consistent with a mechanism likely to involve direct attack of water or an alcohol on the phosphorus. Ca(2+), not required for monomer or micelle hydrolysis, can activate both PLDs for hydrolysis of PC unilamellar vesicles. In the case of Streptomyces sp. PMF PLD, Ca(2+) relieves product inhibition by interactions with the phosphatidic acid (PA). A similar rate enhancement could occur with other HxKx(4)D-motif PLDs as well. For S. chromofuscus PLD, Ca(2+) is absolutely critical for binding of the enzyme to PC vesicles and for PA activation. That the Ca(2+)-PA activation involves a discreet site on the protein is suggested by the observation that the identity of the C-terminal residue in S. chromofuscus PLD can modulate the extent of product activation.  相似文献   

13.
O,O′-dipropyldithiophosphate and O,O′-di-iso-butyldithiophosphate (Dtph) tetraphenylantimony(V) complexes of the general formula [Sb(C6H5)4{S2P(OR)2}] (R = C3H7, i-C4H9) were prepared and studied by means of 13C, 31P CP/MAS NMR spectroscopy and single-crystal X-ray diffraction. Distorted octahedral and trigonal bipyramidal molecular structures have been established for prepared complexes. These unexpected structural distinctions between chemically related compounds are defined by the principally different coordination modes of O,O′-dipropyldithiophosphate and O,O′-di-iso-butyldithiophosphate ligands in their molecular structures (i.e., S,S′-bidentate chelating and S-unidentately coordinated, respectively). To characterise quantitatively phosphorus sites in both species of dithiophosphate ligands, 31P chemical shift anisotropy parameters (δaniso and η) were calculated from spinning sideband manifolds in MAS NMR spectra. The 31P chemical shift tensors for the bidentate chelating and unidentately coordinated dithiophosphate ligands display a profoundly rhombic and nearly axially symmetric characters, respectively.  相似文献   

14.
Core peptide (CP) is a unique peptide derived from thetransmembrane sequence of T cell antigen receptor (TCR)-alpha chain and is capable of inhibiting the immuneresponse both in vitro and in animal models of Tcell mediated inflammation. The structure of CP, withsequence GLRILLLKV, is similar to the amphipathic regionof many peptides. Unlike antimicrobial peptides,however, which damage cell membranes, electron microscopyand propidium iodide exclusion assays on cell membranessuggest that CP does not create pores and may act byinterfering with signal transduction at the membranelevel. To investigate this effect further we report theresults of 31P and 2H solid-state NMRspectroscopy of CP on model membranes. As predicted,even at high concentrations of CP, the structure of modelmembranes was not significantly perturbed. Only at thevery high peptide-to-lipid molar ratio of 1:10significant effects on the model membranes were observed. We conclude that CP does not destroy the integrity of thelipid bilayer.  相似文献   

15.
Single crystal X-ray structural characterizations are recorded for a wide range of adducts of the form MX:dppx (1:1)(n), M = silver(I) (predominantly), copper(I), X = simple (pseudo-) halide or oxy-anion (the latter spanning, where accessible, perchlorate, nitrate, carboxylate - a range of increasing basicity), dppx=bis(diphenylphosphino)alkane, Ph2P(CH2)xPPh2, x = 3-6. Adducts are defined of two binuclear forms: (i) [LM(μ-X)2L], with each ligand chelating a single metal atom, and (ii) [M(μ-X)2(μ-(P-L-P′))2M′] where both ligands L and halides bridge the two metal atoms; a few adducts are defined as polymers, the ligands connecting M(μ-X)2M′ kernels, this motif persisting in all forms. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR).  相似文献   

16.
In the present study, we describe the synthesis of a hydroxyl substituted bridged phenoxycyclotriphosphazene (5), [N3P3(OPh)5OPhO(OPh)5N3P3OPhOH], as a side group and its use for preparation of dendrimeric cyclic phosphazenes. For this purposes, compound 5 is synthesised in five steps from the reactions of cyclotriphosphazene with phenol derivatives. The dendrimeric compounds 6 and 7 have been prepared by the reactions of compound 5 with hexachlorocyclotriphosphazene, N3P3Cl6, or octachlorocyclotetraphosphazene, N4P4Cl8, respectively. Newly synthesized compounds have been fully characterized by elemental analysis, MALDI-TOF mass spectrometry, FT-IR, 1H, 13C and 31P NMR spectroscopy. The thermal stability and fluorescence spectral properties of dendrimeric compounds 6 and 7 are investigated and compared with that of the previously reported cyclic compounds (I-II). Fluorescence quantum yields and lifetimes of dendrimeric compounds and their quenching behaviour by 1,4-benzoquinone are studied in dichloromethane.  相似文献   

17.
Syntheses and spectroscopic features (IR, NMR and ESI MS) are reported for five 1:2 adducts of CuX with dppe (X = I, ClO4, NCS, O3SCF3 (tfs) BH4; dppe = Ph2P(CH2)2PPh2). ESI MS and 31P NMR spectroscopy indicate that these species dissociate in solution yielding free diphosphine and 3:2 species. A single crystal X-ray structure determination has been carried out on Cu(dppe)2NCS defining a four-coordinate complex of the form [(P,P′-dpex)M(P-dpex)X] for M = Cu, the thiocyanate being N-bound; the ionic [Cu(P,P′-dppe)2]tfs has also been structurally characterized.  相似文献   

18.
Although the sensitivity of the plasma membrane H+-ATPase to vanadate is well known, the metabolic response of plant cells to vanadate is less well characterised in vivo and its use as an inhibitor in whole plant experiments has had mixed success. Experiments with maize (Zea mays, L.) roots and with purified plasma membrane fractions from the same tissues showed that exposure to vanadate caused: (i) a reduction in the capacity for phosphate uptake; (ii) a reduction in the extractable ATPase activity from the tissue; and (iii) a significant increase in the ATP level. The measurements on the extractable ATPase activity and the ATP level showed that the effect of vanadate developed slowly, apparently reflecting the slow accumulation of intracellular vanadate. The marked effect of vanadate on the ATP level-exposure to 500 M vanadate for 5 h doubled the ATP content of the roots tips-indicates that there is no stringent control over the ATP level in the roots and that the plasma membrane H+-ATPase activity is likely to have a significant role in determining the ATP level under normal conditions.  相似文献   

19.
Summary Core peptide (CP) is a unique peptide derived from the transmembrane sequence of T cell antigen receptor (TCR)-alpha chain and is capable of inhibiting the immune response both invitro and in animal models of T cell mediated inflammation. The structure of CP, with sequence GLRILLLKV, is similar to the amphipathic region of many peptides. Unlike antimicrobial peptides, however, which damage cell membranes, electron microscopy and propidium iodide exclusion assays on cell membranes suggest that CP does not create pores and may act by interfering with signal transduction at the membrane level. To investigate this effect further we report the results of31P and2H solid-state NMR spectroscopy of CP on model membranes. As predicted, even at high concentrations of CP, the structure of model membranes was not significantly perturbed. Only at the very high peptide-to-lipid molar ratio of 1∶10 significant effects on the model membranes were observed. We conclude that CP does not destroy the integrity of the lipid bilayer.  相似文献   

20.
Daptomycin is a cyclic anionic lipopeptide with an antibiotic activity that is completely dependent on the presence of calcium (as Ca2+). In a previous study [Jung et al., 2004. Chem. Biol. 11, 949-957], it was concluded that daptomycin underwent two Ca2+-dependent structural transitions, whereby the first transition was solely dependent on Ca2+, while the second transition was dependent on both Ca2+ and the presence of negatively charged lipids that allowed daptomycin to insert into and perturb bilayer membranes with acidic character. Differences in the interaction of daptomycin with acidic and neutral membranes were further investigated by spectroscopic means. The lack of quenching of intrinsic fluorescence by the water-soluble quencher, KI, confirmed the insertion of the daptomycin Trp residue into the membrane bilayer, while the kynurenine residue was inaccessible even in an aqueous environment. Differential scanning calorimetry (DSC) indicated that the binding of daptomycin to neutral bilayers occurred through a combination of electrostatic and hydrophobic interactions, while the binding of daptomycin to bilayers containing acidic lipids primarily involved electrostatic interactions. The binding of daptomycin to acidic membranes led to the induction of non-lamellar lipid phases and membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号