首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two discoidin domain receptors, DDR1 and DDR2, are tyrosine kinases that are activated by collagen and are essential regulators of cell-matrix communication. However, the target genes downstream of activated DDRs and their physiological significance are largely unknown. Here, we describe a novel method to dissect signaling pathways induced by extracellular matrix (ECM) receptors. Using the doxycycline-inducible repression system (tet-off), we generated human fibrosarcoma and mouse fibroblast cell lines over-expressing DDR1 or DDR2. These cell lines were employed for gene expression analysis using microarrays specific for human and mouse genes coding for ECM proteins or ECM-interacting factors. We found that approximately 10% of the genes studied were up- or down-regulated more than twofold in response to signals generated by over-expressing DDRs. A common event downstream of DDR1 and DDR2 in human and mouse cells was the up-regulation of P-selectin glycoprotein ligand. Key target genes repressed upon DDR activation were agrin, syndecan-1 and alpha3 integrin. ECM-specific microarrays were found a valuable tool to dissect gene expression changes induced by collagen-receptor signaling pathways.  相似文献   

2.
Blood was collected from three juvenile alligators (Alligator mississippiensis) before, and again 24 h after, injection with bacterial lipopolysaccharide (LPS). The leukocytes were collected from both samples, and the proteins were extracted. Each group of proteins was labeled with a different fluorescent dye and the differences in protein expression were analyzed by two dimensional differential in-gel expressions (2D-DIGE). The proteins which appeared to be increased or decreased by treatment with LPS were selected and analyzed by MALDI-TOF to determine mass and LC–MS/MS to acquire the partial protein sequences. The peptide sequences were compared to the NCBI protein sequence database to determine homology with other sequences from other species. Several proteins of interest appeared to be increased upon LPS stimulation. Proteins with homology to human transgelin-2, fish glucose-6-phosphate dehydrogenase, amphibian α-enolase, alligator lactate dehydrogenase, fish ubiquitin-activating enzyme, and fungal β-tubulin were also increased after LPS injection. Proteins with homology to fish vimentin 4, murine heterogeneous nuclear ribonucleoprotein A3, and avian calreticulin were found to be decreased in response to LPS. In addition, five proteins, four of which were up-regulated (827, 560, 512, and 650%) and one that exhibited repressed expression (307%), did not show homology to any protein in the database, and thus may represent newly discovered proteins. We are using this biochemical approach to isolate and characterize alligator proteins with potential relevant immune function.  相似文献   

3.
4.
Ca(2+) and Ca(2+)/calmodulin-dependent protein phosphatase calcineurin (CN) have been known to play crucial roles in immune response and inflammation. Using mouse peritoneal macrophages and RAW 264.7 macrophage cells, we demonstrated that LPS mobilized intracellular free Ca(2+) and induced CN phosphatase activity. iNOS expression and NO secretion in response to LPS were suppressed by Ca(2+) antagonists (TMB-8, BAPTA/AM, and nifedipine) and CN inhibitor (cyclosporin A). Transient expression of constitutively active CN in mouse peritoneal macrophages and RAW 264.7 macrophages strongly activated NF-kappaB, a key mediator of iNOS expression. We also found that CN mediates NF-kappaB activation via IkappaB-alpha hyperphosphorylation and degradation. Overexpression of dominant negative mutant of IKKalpha and -beta demonstrates that only IKKbeta is the target for CN. These results indicate that CN is required for full iNOS expression and the effective activation of NF-kappaB in RAW 264.7 and peritoneal macrophages.  相似文献   

5.
Lipopolysaccharide (LPS) and inflammatory cytokines cause activation of sphingomyelinases (SMases) and subsequent hydrolysis of sphingomyelin (SM) to produce a lipid messenger ceramide. The use of SMase inhibitors may offer new therapies for the treatment of the LPS- and cytokines-related inflammatory bowel disease (IBD). We synthesized a series of difluoromethylene analogues of SM (SMAs). Here, we show that LPS efficiently increases the release of IL-8 from HT-29 intestinal epithelial cells by activating both neutral SMase and nuclear factor (NF)-kappaB in the cells. The addition of SMA-7 suppressed neutral SMase-catalyzed ceramide production, NF-kappaB activation, and IL-8 release from HT-29 cells caused by LPS. The results suggest that activation of neutral SMase is an underlying mechanism of LPS-induced release of IL-8 from the intestinal epithelial cells. Ceramide production following LPS-induced SM hydrolysis may trigger the activation of NF-kappaB in nuclei. Oral administration of SMA-7 (60 mg/kg) to mice with 2% dextran sulfate sodium (DSS) in their drinking water, for 21 consecutive days, reduced significantly the severity of colonic injury. This finding suggests a central role for SMase/ceramide signaling in the pathology of DSS-induced colitis in mice. The therapeutic effect of SMA-7 observed in mice may involve the suppression of IL-8 production from intestinal epithelial cells by LPS or other inflammatory cytokines.  相似文献   

6.
Lipopolysaccharide (LPS), the major causative agent of bacterial sepsis, has been used by many laboratories in genome-wide expression profiling of the LPS response. However, these studies have predominantly used in vitro cultured macrophages (Macs), which may not accurately reflect the LPS response of these innate immune cells in vivo. To overcome this limitation and to identify inflammatory genes in vivo, we have profiled genome-wide expression patterns in non-lymphoid, splenic myeloid cells extracted directly from LPS-treated mice. Genes encoding factors known to be involved in mediating or regulating inflammatory processes, such as cytokines and chemokines, as well as many genes whose immunological functions are not well known, were strongly induced by LPS after 3 h or 8 h of treatment. Most of the highly LPSresponsive genes that we randomly selected from the microarray data were independently confirmed by quantitative RT-PCR, implying that our microarray data are quite reliable. When our in vivo data were compared to previously reported microarray data for in vitro LPS-treated Macs, a significant proportion (~20%) of the in vivo LPS-responsive genes defined in this study were specific to cells exposed to LPS in vivo, but a larger proportion of them (~60%) were influenced by LPS in both in vitro and in vivo settings. This result indicates that our in vivo LPS-responsive gene set includes not only previously identified in vitro LPS-responsive genes but also novel LPS-responsive genes. Both types of genes would be a valuable resource in the future for understanding inflammatory responses in vivo.  相似文献   

7.
Chen H  Wu Y  Zhang Y  Jin L  Luo L  Xue B  Lu C  Zhang X  Yin Z 《FEBS letters》2006,580(13):3145-3152
Inducible heat shock protein 70 (Hsp70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological and pathological processes and is essential for activating NF-kappaB signaling pathway in response to bacterial lipopolysaccharide (LPS). Here we report a novel mechanism of Hsp70 for preventing LPS-induced NF-kappaB activation in RAW264.7 macrophage-like cells. Our results show that Hsp70 can associate with TRAF6 physically in the TRAF-C domain and prevent TRAF6 ubiquitination. The stimulation of LPS dissociates the binding of Hsp70 and TRAF6 in a time-dependent manner. Hsp70 inhibits LPS-induced NF-kappaB signaling cascade activation in heat-shock treated as well as Hsp70 stable transfected RAW264.7 cells and subsequently decreases iNOS and COX-2 expression. Two Hsp70 mutants, Hsp70DeltaC(1-428aa) with N-terminal ATPase domain and Hsp70C(428-642aa) with C-terminal domain, lack the ability to influence TRAF6 ubiquitination and TRAF6-triggered NF-kappaB activation. Taken together, these findings indicate that Hsp70 inhibits LPS-induced NF-kappaB activation by binding TRAF6 and preventing its ubiquitination, and results in inhibition of inflammatory mediator production, which provides a new insight for analyzing the effects of Hsp70 on LPS-triggered inflammatory signal transduction pathways.  相似文献   

8.
The involvement of retinoblastoma protein-interacting zinc finger 1 (RIZ1), a tumor suppressor, in lipopolysaccharide (LPS)-induced inflammatory responses was investigated by using RAW 264.7 macrophage-like cells. LPS significantly augmented the expression of RIZ1 and the augmentation was mediated by the activation of nuclear factor (NF)-κB and Akt. The silencing of RIZ1 with the siRNA led to the inactivation of NF-κB in response to LPS. Moreover, the RIZ1 silencing caused the down-regulation of p53 activation and a p53 pharmacological inhibitor attenuated the RIZ1 expression. LPS-induced tumor necrosis factor-α and interleukin-6 production was prevented by RIZ1 siRNA or a p53 pharmacological inhibitor. Therefore, RIZ1 was suggested to augment LPS-induced NF-κB activation in collaboration with p53 and enhance the production of proinflammatory cytokines in response to LPS.  相似文献   

9.
Mastitis, an inflammation of mammary gland, is a serious disease that affects the health of dairy cows around the world. Myricetin, a flavonoid from Bayberry, has been reported to suppress various inflammatory response. The aim of this study was to evaluate the effect of myricetin on lipopolysaccharide (LPS)-induced in vivo and in vitro mastitis model and clarify the underlying mechanism. In vivo experiments, myricetin attenuated the severity of inflammatory lesion and neutrophil infiltration. Moreover, myricetin pretreatment induced a significant decrease in the activity of myeloperoxidase (MPO) and the production of TNF-α, IL-6, and IL-1β triggered by LPS. Myricetin pretreatment could also increase the integrity of the blood–milk barrier and upregulate the tight junction proteins in LPS-induced mice mastitis. In vitro, myricetin inhibited LPS-induced inflammatory response in mice mammary epithelial cells (mMECs). In the further mechanism studies, we found that the anti-inflammatory effect of myricetin was mediated by inhibiting LPS-induced phosphorylation of AKT, IKK-α, IκB-α, and P65 in vivo and in vitro. Collectively, these data suggested that myricetin effectively ameliorated the inflammatory response by inhibiting the AKT/IKK/NF-κB signaling pathway and repairing the integrity of blood–milk barrier in LPS-induced mice mastitis.  相似文献   

10.
Bacterial lipopolysaccharide (LPS) has long been suggested as a potent inducer of bone loss in vivo despite controversial effects on osteoclast precursors. Recently, the role of the deubiquitinating protease A20 in regulating the LPS response in various organs was reported. In the present study, we investigated whether A20 is expressed in osteoclast cultures in response to RANKL or LPS and whether this protein plays a role in osteoclast formation and activation. Human peripheral blood mononuclear cells were cultured in the presence of M-CSF ± RANKL ± LPS. Although LPS induced the formation of multinucleated TRAP-positive cells expressing OSCAR, cathepsin K, and the calcitonin receptor, these cells were not capable of lacunar resorption. Release of TNF-α was noted in LPS-treated cultures, and the addition of a neutralizing anti-TNF-α antibody abrogated osteoclast formation in these cultures. A20 appeared to be a late-expressed gene in LPS-treated cultures and was associated with TRAF6 degradation and NF-κB inhibition. Silencing of A20 restored TRAF6 expression and NF-κB activation and resulted in increased bone resorption in LPS-treated cultures. A20 appeared important in the control of bone resorption and could represent a therapeutic target to treat patients with bone resorption associated with inflammatory diseases.  相似文献   

11.
12.
目的 利用CRISPR/Cas9技术构建Toll样受体4(TLR4)基因敲除小鼠模型,并观察突变小鼠对革兰氏阴性细菌脂多糖(LPS)刺激响应的变化。方法 针对TLR4基因外显子2设计并合成1对sgRNA片段,与编码Cas9的mRNA混合后通过受精卵显微注射方法,建立TLR4基因敲除小鼠,通过繁育获得基因敲除纯合子小鼠(TLR4-/-小鼠);通过LPS刺激,分析TLR4-/-小鼠对炎症应激的反应情况,并在分子和病理水平上和野生型对照(WT)进行比较。结果 PCR及测序检测表明TLR4基因外显子2在小鼠基因中被成功敲除;给予LPS刺激后,IL1βIL6MyD88iNOSTNFa等炎症因子的表达在野生型小鼠的心、肝和肺组织中显著上调,而在TLR4-/-小鼠中则几乎没有变化;血生化指标显示LPS刺激后WT小鼠血清中的尿素(Urea)和肌酐(Cre)水平显著升高,而TLR4-/-小鼠刺激前后无显著变化,病理分析同样发现TLR4-/-小鼠能够抵抗LPS对肾组织的损伤。结论 利用CRISPR/Cas9技术成功构建了TLR4基因剔除小鼠模型,TLR4的缺失能够降低IL1βIL6MyD88iNOSTNFa炎症因子对LPS刺激的响应,抑制LPS引起的炎症反应及对组织的损伤。  相似文献   

13.
JAK/STAT and NFκB signalling pathways play essential roles in regulating inflammatory responses, which are important pathogenic factors of various serious immune-related diseases, and function individually or synergistically. To find prodrugs that can treat inflammation, we performed a preliminary high-throughput screening of 18 840 small molecular compounds and identified scaffold compound L971 which significantly inhibited JAK/STAT and NFκB driven luciferase activities. L971 could inhibit the constitutive and stimuli-dependent activation of STAT1, STAT3 and IκBα and could significantly down-regulate the proinflammatory gene expression in mouse peritoneal macrophages stimulated by LPS. Gene expression profiles upon L971 treatment were determined using high-throughput RNA sequencing, and significant differentially up-regulated and down-regulated genes were identified by DESeq analysis. The bioinformatic studies confirmed the anti-inflammatory effects of L971. Finally, L971 anti-inflammatory character was further verified in LPS-induced sepsis shock mouse model in vivo. Taken together, these data indicated that L971 could down-regulate both JAK/STAT and NFκB signalling activities and has the potential to treat inflammatory diseases such as sepsis shock.  相似文献   

14.
15.
Previous studies have implicated a role of heterotrimeric Gαi proteins in lipopolysaccharide (LPS)-induced inflammatory responses. We hypothesized that Toll-like receptor (TLR) signaling regulates Gαi proteins, which are anti-inflammatory in endotoxemia and polymicrobial sepsis. RAW 264.7 cells were stimulated with LPS and the Gαi-GTP protein complex was immunoprecipitated with a Gαi protein activation assay. In subsequent in vivo studies, the Gαi protein inhibitor pertussis toxin (PTx) or Gi protein agonist mastoparan (MP-7) were administrated prior to endotoxemia. LPS-induced pro-inflammatory cytokines and mortality were determined. To examine the role of Gαi2 in sepsis, Gαi2 (−/−) and wildtype (WT) mice were subjected to cecal ligation and puncture (CLP) and monitored every 24 h for 120 h. Other mice were sacrificed 24 h after CLP. Peritoneal fluid, blood, and tissue samples were collected. Plasma pro-inflammatory cytokine production, bacterial load in peritoneal fluid, blood and lung tissue, myeloperoxidase (MPO) activity in lung and liver and different immune cell populations in spleen were studied. We found that Gαi proteins are rapidly activated by LPS followed by rapid inactivation. These studies provide the first direct evidence that Gαi proteins are modulated by TLR signaling. In following studies, PTx augmented LPS-induced plasma TNFα, IL-6, whereas MP-7 suppressed LPS-induced TNFα and decreased LPS-induced mortality. In sepsis studies, the survival rate post-CLP was significantly decreased in the Gαi2 (−/−) mice compared to WT mice. CLP-induced plasma TNFα, IL-6, bacterial load in peritoneal fluid, blood and lung tissue and lung and liver MPO activity were significantly increased in Gαi2 (−/−) compared to WT mice. Gαi2 (−/−) mice also exhibited increased Th1 and Th2 responses compared to WT mice. Taken together, Gαi proteins are activated by LPS and negatively regulate endotoxemia and sepsis. Understanding the role of Gαi2 protein in regulation of the inflammatory response in sepsis may provide novel targets for treatment of sepsis.  相似文献   

16.
17.
18.

Background and aims

B-cell lymphoma/leukemia (BCL)-10 and reactive oxygen species mediate two pathways of NF-κB (RelA) activation by lipopolysaccharide (LPS) in human colonic epithelial cells. The pathway for LPS activation of RelB by the non-canonical pathway (RelB) in non-myeloid cells was not yet reported, but important for understanding the range of potential microbial LPS-induced effects in inflammatory bowel disease.

Methods

Experiments were performed in human colonic epithelial cells and in mouse embryonic fibroblasts deficient in components of the IkappaB kinase (IKK) signalosome, in order to detect mediators of the non-canonical pathway of NF-κB activation, including nuclear RelB and p52 and phospho- and total NF-κB inducing kinase (NIK). BCL10 was silenced by siRNA and effects of mutations of specific phosphorylation sites of BCL10 (Ser138Gly and Ser218Gly) were determined.

Results

By the non-canonical pathway, LPS exposure increased nuclear RelB and p52, and phospho-NIK, with no change in total NIK. Phosphorylation of BCL10 serine 138 was required for NIK phosphorylation, since mutation of this residue eliminated the increases in phospho-NIK and nuclear RelB and p52. Mutations of either serine 138 or serine 218 reduced RelA, p50, and phospho-IκBα of the canonical pathway. Effects of LPS stimulation and BCL10 silencing on NIK phosphorylation were demonstrated in confocal images.

Conclusions

LPS induces activation of both canonical and non-canonical pathways of NF-κB in human colonic epithelial cells, and the non-canonical pathway requires phosphorylations of BCL10 (serine 138) and NIK. These findings demonstrate the important role of BCL10 in mediating LPS-induced inflammation in human colonic epithelial cells and may open new avenues for therapeutic interventions.  相似文献   

19.
Oxidized low-density lipoprotein (oxLDL) modifies macrophage inflammatory responses in the pathogenesis of atherosclerosis. In the present study, we focused on gamma-glutamylcysteine synthetase (gamma-GCS), a rate limiting enzyme of glutathione synthesis, and examined whether inflammatory stimulation of gamma-GCS gene in macrophages by lipopolysaccharide (LPS) is modified when the cells were exposed to oxLDL. We found that the nuclear factor-kappaB (NF-kappaB)-mediated induction of gamma-GCS by LPS (100 ng/ml) was suppressed by a 48-h pre-treatment with oxLDL (50 micro/ml), and this was due to a decrease in the DNA-binding activity of NF-kappaB. Furthermore, pre-treatment with oxLDL caused a carbonylation of NF-kappaB subunit p65. With alpha-tocopherol, the oxLDL-induced carbonylation of proteins decreased with a restoration of DNA-binding activity of NF-kappaB. Together, these indicate that oxidative modification of NF-kappaB suppresses LPS-induced expression of gamma-GCS gene in ox-LDL-treated cells, suggesting an implication of oxLDL-induced modulation of NF-kappaB signaling with atherosclerosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号