首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Si Y  Liu X  Cheng M  Wang M  Gong Q  Yang Y  Wang T  Yang W 《PloS one》2011,6(5):e19967
Liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) are commonly induced by chronic hepatitis C virus (HCV) infection. We aimed to identify and characterize the involvement of previously screened cytokine GDF15 in HCV pathogenesis. We examined the GDF15 expression after HCV infection both in vitro and in vivo. Cultured JFH-1 HCV was used to determine the GDF15 function on virus propagation. GDF15 overexpression and RNA interference were employed to profile the GDF15-regulated genes, signaling pathways and cell biology phenotypes. The mRNA expression and protein secretion of GDF15 was dramatically increased in HCV-infected hepatoma cells, which maybe a host response to viral proteins or infection-induced cell stress. Patients infected with HCV had an average 15-fold higher blood GDF15 level than that of healthy volunteers. Three HCC individuals in the HCV cohort showed extremely high GDF15 concentrations. Transfection or exogenously supplied GDF15 enhanced HCV propagation, whereas knockdown of endogenous GDF15 resulted in inhibition of virus replication. Overexpressed GDF15 led to Akt activation and the phosphorylation of Akt downstream targeted GSK-3β and Raf. Several HCC-related molecules, such as E-cadherin, β-catenin, Cyclin A2/B1/D1, were up-regulated by GDF15 stimulation in vitro. Overexpression of GDF15 in hepatoma cells resulted in increased DNA synthesis, promoted cell proliferation, and importantly enhanced invasiveness of the cells. In conclusion, these results suggest that an elevated serum GDF15 level is a potential diagnostic marker for viral hepatitis, and GDF15 may contribute to HCV pathogenesis by altering the signaling and growth of host cells.  相似文献   

3.
4.
Woodlands sheep have a putative genetic mutation (FecX2(W)) that increases ovulation rate. At present, the identity of FecX2(W) is unknown. The trait does not appear to be due to the previously described mutations in bone morphogenetic protein 15 (BMP15), growth differentiation factor 9 (GDF9), or bone morphogenetic protein receptor type 1B (BMPR1B) that affect ovulation rate in sheep. Potentially, FecX2(W) could be an unidentified genetic mutation in BMP15 or in the closely related GDF9, which interacts with BMP15 to control ovarian function. Alternatively, FecX2(W) may affect ovulation rate by changing the expression patterns in the molecular pathways activated by genes known to regulate ovulation rate. The objectives of these experiments were to sequence the complete coding region of the BMP15 and GDF9 genes, determine the patterns of expression of mRNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development, and characterize the follicular populations in ewes heterozygous for the Woodlands mutation and their wild-type contemporaries. No differences in the coding sequences of BMP15 or GDF9 genes were identified that were associated with enhanced ovulation rate. The expression patterns of GDF9 and BMPR2 mRNAs were not different between genotypes. However, expression of BMP15 mRNA was less in oocytes of FecX2(W) ewes in large preantral and antral follicles. Expression of ALK5 mRNA was significantly higher in the oocytes of FecX2(W) ewes, whereas expression of BMPR1B was decreased in both oocytes and granulosa cells of FecX2(W) ewes. FecX2(W) ewes also had increased numbers of antral follicles <1 mm in diameter. These follicles were smaller in average diameter, with the oocytes also being of a smaller mean diameter. Given that a mutation in BMP15 or BMPR1B results in increased ovulation rates in sheep, the differences in expression levels of BMP15 and BMPR1B may play a role in the increase in ovulation rate observed in Woodlands ewes with the FecX2(W) mutation.  相似文献   

5.
6.
Secondary metastases are the leading cause of mortality in patients with breast cancer. Cytochrome P450 (CYP) 2J2 (CYP2J2) is upregulated in many human tumors and generates epoxyeicosanoids from arachidonic acid that promote tumorigenesis and metastasis, but at present there is little information on the genes that mediate these actions. In this study MDA-MB-468 breast cancer cells were stably transfected with CYP2J2 (MDA-2J2 cells) and Affymetrix microarray profiling was undertaken. We identified 182 genes that were differentially expressed in MDA-2J2 cells relative to control (MDA-CTL) cells (log[fold of control] ≥2). From gene ontology pathway analysis bone morphogenetic protein (BMP) receptor 1B (BMPR1B) emerged as an important upregulated gene in MDA-2J2 cells. Addition of the BMPR1B ligand BMP2 stimulated the migration of MDA-2J2 cells, but not MDA-CTL cells, from 3D-matrigel droplets. Migration of MDA-2J2 cells was prevented by the BMPR antagonist dorsomorphin. These findings indicate that over-expression of CYP2J2 in MDA-MB-468-derived breast cancer cells activates BMPR1B expression that may contribute to increased migration. Targeting BMPR1B may be a novel approach to inhibit the metastatic activity of breast cancers that contain high levels of CYP2J2.  相似文献   

7.
8.
Differentiation leads to the cessation of cellular proliferation, but little is known about the molecular mechanisms of growth arrest. We compared the effect of two differentiation inducers, 12-o-tetradecanoyl 13-acetate (TPA) and dimethyl sulfoxide (DMSO) on both the cell-cycle and the modulation of G2-related genes in synchronized HL60 cells. TPA treatment of HL60 cells resulted in G1 arrest within 24 h. In contrast, the cell cycling of DMSO-treated cells was initially accelerated and they progressed to the second cycle before accumulating in the G1 phase. Expression of cyclin B, cdc25, wee1 and cdc2 was studied during cell cycle arrest by Northern blot hybridization. Expression of cyclin B, cdc25 and cdc2 fluctuated in association with cell cycle progression towards the G2/M phase, while wee1 expression remained constant in untreated cells. These four genes were highly expressed in TPA-treated cells for the first 12 h, but drastic down-regulation was seen at 18 h and expression became undetectable after 24 h. In contrast, no remarked changes of gene expression were seen in DMSO-treated cells. These findings suggest that cell cycle progression along with the initial process of differentiation in response to TPA differs from the response to DMSO and that the down-regulation of cdc2 expression by TPA-treated HL60 cells contributes to endorsement of G1 arrest.  相似文献   

9.
Cyclin proteins form complexes with members of the p34cdc2 kinase family and they are essential components of the cell cycle regulatory machinery. They are thought to determine the timing of activation, the subcellular distribution, and/or the substrate specificity of cdc2-related kinases, but their precise mode of action remains to be elucidated. Here we report the cloning and sequencing of avian cyclin B2. Based on the use of monospecific antibodies raised against bacterially expressed protein, we also describe the subcellular distribution of cyclin B2 in chick embryo fibroblasts and in DU249 hepatoma cells. By indirect immunofluorescence microscopy we show that cyclin B2 is cytoplasmic during interphase of the cell cycle, but undergoes an abrupt translocation to the cell nucleus at the onset of mitotic prophase. Finally, we have examined the phenotypic consequences of expressing wild-type and mutated versions of avian cyclin B2 in HeLa cells. We found that expression of cyclin B2 carrying a mutation at arginine 32 (to serine) caused HeLa cells to arrest in a pseudomitotic state. Many of the arrested cells displayed multiple mitotic spindles, suggesting that the centrosome cycle had continued in spite of the cell cycle arrest.  相似文献   

10.
HBXIP基因对乙肝病毒X蛋白诱导细胞凋亡的影响   总被引:4,自引:2,他引:4  
探讨乙型肝炎病毒X蛋白结合蛋白(hepatitisBXinteractingprotein ,HBXIP)基因在乙型肝炎病毒X蛋白(HBX)诱导肝癌细胞凋亡时对细胞周期的影响.构建HBXIP基因真核表达载体pcDNA3 hbxip ,进行瞬时基因转染,将克隆有HBx基因的pCMV X (分别为1μg、2 μg和3μg)和pcDNA3 hbxip质粒分别和共转染至人H74 0 2肝癌细胞中(总体积分别为5 0 μl) .发现瞬时转染3μgpCMV X质粒后,肝癌细胞凋亡发生率为34 4 % ,肝癌细胞的细胞周期相关蛋白p2 7表达水平发生明显上调;与对照组相比,瞬时转染1μg、2 μg和3μg时,细胞周期蛋白D和细胞周期蛋白E的表达水平均发生明显上调,但随着HBX水平的增加细胞周期蛋白D和细胞周期蛋白E的表达水平发生明显下降;在稳定转染pCMV X质粒的H74 0 2 X肝癌细胞中无明显的细胞凋亡发生,研究发现p2 7的表达水平发生了明显下调,而细胞周期蛋白D和细胞周期蛋白E的表达水平发生了明显上调;当pcDNA3 hbxip质粒与pCMV X质粒进行共瞬时转染时,细胞凋亡发生率由pcDNA3质粒与pCMV X质粒共转染时的2 9 2 %下降为13 3% ,p2 7的表达水平发生了下调,但细胞周期蛋白D和细胞周期蛋白E的表达水平无明显变化.研究结果表明,瞬时转染一定剂量的x基因可导致肝癌细胞发生凋亡,细胞周期相关蛋白p2 7、细胞周期蛋白D和  相似文献   

11.
12.
We identified genes responsive to sodium butyrate (SB) in colonic epithelial cells using cDNA microarrays. Treatment with 2 mM SB of colonic epithelial cells (MCE301), which was derived from transgenic mice harboring a temperature-sensitive simian virus 40 large T-antigen, arrested cell growth and showed a differentiated phenotype accompanying an increase in alkaline phosphatase activity. Of the approximately 900 genes analyzed, SB down-regulated 25 genes and up-regulated 88 genes by a factor of 2.0 or greater. Northern blot or TaqMan and Western blot analyses confirmed that the mRNA and protein levels of cyclin D1 and the level of proliferating cell nuclear antigen decreased, whereas the levels of integrin beta1 and osteopontin increased. The present results regarding the changes in gene expression, arrived at using microarrays, will provide a basis for a further understanding of the molecular mechanisms of cell growth arrest and differentiation in response to SB in colonic epithelial cells.  相似文献   

13.
Choi HJ  Fukui M  Zhu BT 《PloS one》2011,6(8):e24312

Background

During a normal cell cycle, the transition from G2 phase to mitotic phase is triggered by the activation of the cyclin B1-dependent Cdc2 kinase. Here we report our finding that treatment of MCF-7 human breast cancer cells with nocodazole, a prototypic microtubule inhibitor, results in strong up-regulation of cyclin B1 and Cdc2 levels, and their increases are required for the development of mitotic prometaphase arrest and characteristic phenotypes.

Methodology/Principal Findings

It was observed that there was a time-dependent early increase in cyclin B1 and Cdc2 protein levels (peaking between 12 and 24 h post treatment), and their levels started to decline after the initial increase. This early up-regulation of cyclin B1 and Cdc2 closely matched in timing the nocodazole-induced mitotic prometaphase arrest. Selective knockdown of cyclin B1or Cdc2 each abrogated nocodazole-induced accumulation of prometaphase cells. The nocodazole-induced prometaphase arrest was also abrogated by pre-treatment of cells with roscovitine, an inhibitor of cyclin-dependent kinases, or with cycloheximide, a protein synthesis inhibitor that was found to suppress cyclin B1 and Cdc2 up-regulation. In addition, we found that MAD2 knockdown abrogated nocodazole-induced accumulation of cyclin B1 and Cdc2 proteins, which was accompanied by an attenuation of nocodazole-induced prometaphase arrest.

Conclusions/Significance

These observations demonstrate that the strong early up-regulation of cyclin B1 and Cdc2 contributes critically to the rapid and selective accumulation of prometaphase-arrested cells, a phenomenon associated with exposure to microtubule inhibitors.  相似文献   

14.
15.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of synovial cells. NK4 is a hepatocyte growth factor antagonist and is implicated in cell proliferation, viability, and apoptosis of many tumour cells. This study aimed to investigate the role of NK4 in the regulation of human RA synovial cell proliferation and apoptosis. Fibroblast‐like synoviocytes (FLSs) isolated from RA patients and MH7A synovial cells were subjected to MTT, flow cytometry, and Western blot analysis. We found that NK4 suppressed cell proliferation through cell cycle arrest at the G0/G1 phase and induced apoptosis in RA synovial cells. Furthermore, NK4 altered the expression of cell cycle and apoptosis‐related proteins such as cyclin D1, cyclin B1, PCNA, p21, p53, Bcl‐2, Bax, cleaved caspase‐9, and cleaved caspase‐3. Additionally, NK4 reduced the phosphorylation level of NF‐κB p65 and upregulated the expression of sirt1, but did not change the levels of p38 and p‐p38 in RA‐FLS and MH7A cells. In conclusion, NK4 inhibits the proliferation and induces apoptosis of human RA synovial cells. NK4 is a promising therapeutic target for RA. We demonstrated that NK4 inhibited cell proliferation by inducing apoptosis and arresting cell cycle in RA‐FLS and MH7A cells. The apoptotic effects of NK4 may be mediated in part by decreasing Bcl‐2 protein level, increasing Bax and caspase 3 protein levels, and inhibiting NF‐κB signalling in RA‐FLS and MH7A cells. These findings reveal potential mechanism underlying the role of NK4 in RA synovial cells and suggest that NK4 is a promising agent for RA treatment.  相似文献   

16.
Through a detailed study of cell cycle progression, protein expression, and kinase activity in gamma-irradiated synchronized cultures of human skin fibroblasts, distinct mechanisms of initiation and maintenance of G2-phase and subsequent G1-phase arrests have been elucidated. Normal and E6-expressing fibroblasts were used to examine the role of TP53 in these processes. While G2 arrest is correlated with decreased cyclin B1/CDC2 kinase activity, the mechanisms associated with initiation and maintenance of the arrest are quite different. Initiation of the transient arrest is TP53-independent and is due to inhibitory phosphorylation of CDC2 at Tyr15. Maintenance of the G2 arrest is dependent on TP53 and is due to decreased levels of cyclin B1 mRNA and a corresponding decline in cyclin B1 protein level. After transiently arresting in G2 phase, normal cells chronically arrest in the subsequent G1 phase while E6-expressing cells continue to cycle. The initiation of this TP53-dependent G1-phase arrest occurs despite the presence of substantial levels of cyclin D1/CDK4 and cyclin E/CDK2 kinase activities, hyperphosphoryated RB, and active E2F1. CDKN1A (also known as p21(WAF1/CIP1)) levels remain elevated during this period. Furthermore, CDKN1A-dependent inhibition of PCNA activity does not appear to be the mechanism for this early G1 arrest. Thus the inhibition of entry of irradiated cells into S phase does not appear to be related to DNA-bound PCNA complexed to CDKN1A. The mechanism of chronic G1 arrest involves the down-regulation of specific proteins with a resultant loss of cyclin E/CDK2 kinase activity.  相似文献   

17.
18.
卡铂(carboplatin, CBP)是一种抗肿瘤活性较强的化疗药物, 通过诱导细胞周期阻滞抑制肿瘤细胞生长, 但其诱导细胞周期阻滞的报告不甚一致. 本研究探索卡铂对卵巢癌HO-8910细胞生长及细胞周期进程的影响. MTS结果显示, 卡铂以浓度和时间依赖方式抑制卵巢癌HO-8910细胞生长, 联合使用ERK1/2通路抑制剂PD98059可使卡铂抗卵巢癌细胞增殖作用增强. 采用Giemsa染色法观察到, 卡铂与PD98059单用或联用均能致卵巢癌细胞发生明显的形态学变化. 流式细胞术检测细胞周期发现, 随卡铂浓度的增高, S期阻滞作用增强; 抑制ERK1/2通路可拮抗卡铂对HO-8910细胞S期阻滞作用, 增加G1期阻滞作用, 而对G2/M期细胞影响不明显. Western印迹结果显示, 随卡铂浓度的增高, p-ERK1/2、Cdc2(Y15)和p Cdc2(T161)的表达逐渐升高, Cyclin E1和Cyclin B1的表达逐渐降低; 抑制ERK1/2通路可将卡铂上调,p-ERK1/2和p-Cdc2(T161)的作用反转为下调作用, 上调Cdc2(Y15)的表达受阻, 抑制Cyclin B1的下调作用, 促进Cyclin E1的下调作用. 本研究结果提示, 卡铂通过抑制ERK1/2激活, 诱导人卵巢癌HO-8910细胞S和G1期阻滞, 抑制卵巢癌细胞生长.  相似文献   

19.
20.
目的:利用不同浓度的桦木酸对人胃癌SGC-7901细胞增殖的影响。方法:桦木酸设4个不同浓度(0、10、20、30 μg/ml),并采用常规化疗药物5-Fu处理作为阳性对照,以探究其对细胞增殖的影响。采用台盼蓝拒染法和吉姆萨染色法分别检测桦木酸对人胃癌SGC-7901细胞生长抑制率及克隆形成率;EdU法检测SGC-7901的细胞增殖;利用流式细胞术检测细胞周期, 应用qRT-PCR和Western blot分别检测细胞周期蛋白cyclin D1,cyclin B1的mRNA和蛋白表达水平。结果:不同浓度的桦木酸处理人胃癌SGC-7901细胞48 h后,其细胞生长抑制率显著升高(P<0.05),克隆形成率和细胞增殖率均明显降低(P<0.01),且呈剂量和时间依赖性;人胃癌SGC-7901细胞被阻滞在G1/G0期,细胞周期蛋白cyclin D1和cyclin B1的mRNA和蛋白表达量也随桦木酸浓度升高而显著降低(P<0.01)。且与5-Fu对照组相比,桦木酸浓度为20 μg/ml和30 μg/ml时,细胞增殖能力明显降低,细胞周期被抑制,细胞周期蛋白表达量均明显降低(P <0.05)。结论:桦木酸通过下调cyclin B1和cyclin D1基因表达,将人胃癌SGC-7901细胞阻滞在G1/G0期,从而抑制细胞增殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号