首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few organisms are able to withstand desiccation stress; however, desiccation tolerance is widespread among plant seeds. Survival without water relies on an array of mechanisms, including the accumulation of stress proteins such as the late embryogenesis abundant (LEA) proteins. These hydrophilic proteins are prominent in plant seeds but also found in desiccation-tolerant organisms. In spite of many theories and observations, LEA protein function remains unclear. Here, we show that LEAM, a mitochondrial LEA protein expressed in seeds, is a natively unfolded protein, which reversibly folds into alpha-helices upon desiccation. Structural modeling revealed an analogy with class A amphipathic helices of apolipoproteins that coat low-density lipoprotein particles in mammals. LEAM appears spontaneously modified by deamidation and oxidation of several residues that contribute to its structural features. LEAM interacts with membranes in the dry state and protects liposomes subjected to drying. The overall results provide strong evidence that LEAM protects the inner mitochondrial membrane during desiccation. According to sequence analyses of several homologous proteins from various desiccation-tolerant organisms, a similar protection mechanism likely acts with other types of cellular membranes.  相似文献   

2.
LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT‐PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α‐helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms.  相似文献   

3.
Some eukaryotes, including bdelloid rotifer species, are able to withstand desiccation by entering a state of suspended animation. In this ametabolic condition, known as anhydrobiosis, they can remain viable for extended periods, perhaps decades, but resume normal activities on rehydration. Anhydrobiosis is thought to require accumulation of the non-reducing disaccharides trehalose (in animals and fungi) or sucrose (in plant seeds and resurrection plants), which may protect proteins and membranes by acting as water replacement molecules and vitrifying agents. However, in clone cultures of bdelloid rotifers Philodina roseola and Adineta vaga, we were unable to detect trehalose or other disaccharides in either control or dehydrating animals, as determined by gas chromatography. Indeed, trehalose synthase genes (tps) were not detected in these rotifer genomes, suggesting that bdelloids might not have the capacity to produce trehalose under any circumstances. This is in sharp contrast to other anhydrobiotic animals such as nematodes and brine shrimp cysts, where trehalose is present during desiccation. Instead, we suggest that adaptations involving proteins might be more important than those involving small biochemicals in rotifer anhydrobiosis: on dehydration, P. roseola upregulates a hydrophilic protein related to the late embryogenesis abundant (LEA) proteins associated with desiccation tolerance in plants. Since LEA-like proteins have also been implicated in the desiccation tolerance of nematodes and micro-organisms, it seems that hydrophilic protein biosynthesis represents a common element of anhydrobiosis across several biological kingdoms.  相似文献   

4.
Late embryogenesis abundant (LEA) proteins, which accumulate to high levels in seeds during late maturation, are associated with desiccation tolerance. A member of the LEA protein family was found in cultured cells of the liverwort Marchantia polymorpha; preculture treatment of these cells with 0.5 M sucrose medium led to their acquisition of desiccation tolerance. We characterized this preculture-induced LEA protein, designated as MpLEA1. MpLEA1 is predominantly hydrophilic with a few hydrophobic residues that may represent its putative signal peptide. The protein also contains a putative endoplasmic reticulum (ER) retention sequence, HEEL, at the C-terminus. Microscopic observations indicated that GFP-fused MpLEA1 was mainly localized in the ER. The recombinant protein MpLEA1 is intrinsically disordered in solution. On drying, MpLEA1 shifted predominantly toward α-helices from random coils. Such changes in conformation are a typical feature of the group 3 LEA proteins. Recombinant MpLEA1 prevented the aggregation of α-casein during desiccation–rehydration events, suggesting that MpLEA1 exerts anti-aggregation activity against desiccation-sensitive proteins by functioning as a “molecular shield”. Moreover, the anti-aggregation activity of MpLEA1 was ten times greater than that of BSA or insect LEA proteins, which are known to prevent aggregation on drying. Here, we show that an ER-localized LEA protein, MpLEA1, possesses biochemical and structural features specific to group 3 LEA proteins.  相似文献   

5.
Late Embryogenesis Abundant (LEA) proteins are commonly found in plants and other organisms capable of undergoing severe and reversible dehydration, a phenomenon termed “anhydrobiosis”. Here, we have produced a tagged version for three different LEA proteins: pTag-RAB17-GFP-N, Zea mays dehydrin-1dhn, expressed in the nucleo-cytoplasm; pTag-WCOR410-RFP, Tricum aestivum cold acclimation protein WCOR410, binds to cellular membranes, and pTag-LEA-BFP, Artemia franciscana LEA protein group 3 that targets the mitochondria. Sheep fibroblasts transfected with single or all three LEA proteins were subjected to air drying under controlled conditions. After rehydration, cell viability and functionality of the membrane/mitochondria were assessed. After 4 h of air drying, cells from the un-transfected control group were almost completely nonviable (1% cell alive), while cells expressing LEA proteins showed high viability (more than 30%), with the highest viability (58%) observed in fibroblasts expressing all three LEA proteins. Growth rate was markedly compromised in control cells, while LEA-expressing cells proliferated at a rate comparable to non-air-dried cells. Plasmalemma, cytoskeleton and mitochondria appeared unaffected in LEA-expressing cells, confirming the protection conferred by LEA proteins on these organelles during dehydration stress. This is likely to be an effective strategy when aiming to confer desiccation tolerance to mammalian cells.  相似文献   

6.
Water loss or desiccation is among the most life-threatening stresses. It leads to DNA double-strand breakage, protein aggregation, cell shrinkage, and low water activity precluding all biological functions. Yet, in all kingdoms of life, rare organisms are resistant to desiccation through prevention or reversibility of such damage. Here, we explore possible hallmarks of prokaryotic desiccation tolerance in their proteomes. The content of unstructured, low complexity (LC) regions was analyzed in a total of 460 bacterial and archaeal proteomes.It appears that species endowed with proteomes abundant in unstructured hydrophilic LC regions are desiccation-tolerant or sporulating bacteria, halophilic archaea and bacteria, or host-associated species. In the desiccation- and radiation-resistant bacterium Deinococcus radiodurans, most proteins that contain large hydrophilic LC regions have unassigned function, but those with known function are mostly involved in diverse cellular recovery processes. Such LC regions are typically absent in orthologous proteins in desiccation-sensitive species. D. radiodurans encodes also special LC proteins, akin to those associated with desiccation resistance of plant seeds and some plants and animals. Therefore, we postulate that large unstructured hydrophilic LC regions and proteins provide for cellular resistance to dehydration and we discuss mechanisms of their protective activity.  相似文献   

7.
8.
Late embryogenesis‐abundant (LEA) proteins are one of the components involved in desiccation tolerance (DT) by maintaining cellular structures in the dry state. Among them, MtPM25, a member of the group 5 is specifically associated with DT in Medicago truncatula seeds. Its function is unknown and its classification as a LEA protein remains elusive. Here, evidence is provided that MtPM25 is a hydrophobic, intrinsically disordered protein that shares the characteristics of canonical LEA proteins. Screening protective activities by testing various substrates against freezing, heating and drying indicates that MtPM25 is unable to protect membranes but able to prevent aggregation of proteins during stress. Prevention of aggregation was also found for the water soluble proteome of desiccation‐sensitive radicles. This inhibition was significantly higher than that of MtEM6, one of the most hydrophilic LEA protein associated with DT. Moreover, when added after the stress treatment, MtPM25 is able to rapidly dissolve aggregates in a non‐specific manner. Sorption isotherms show that when it is unstructured, MtPM25 absorbs up to threefold more water than MtEM6. MtPM25 is likely to act as a protective molecule during drying and plays an additional role as a repair mechanism compared with other LEA proteins.  相似文献   

9.
10.
Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity.  相似文献   

11.
Common amino acid sequence domains among the LEA proteins of higher plants   总被引:41,自引:0,他引:41  
LEA proteins are late embryogenesis abundant in the seeds of many higher plants and are probably universal in occurrence in plant seeds. LEA mRNAs and proteins can be induced to appear at other stages in the plant's life by desiccation stress and/or treatment with the plant hormone abscisic acid (ABA). A role in protecting plant structures during water loss is likely for these proteins, with ABA functioning in the stress transduction process. Presented here are conserved tracts of amino acid sequence among LEA proteins from several species that may represent domains functionally important in desiccation protection. Curiously, an 11 amino acid sequence motif is found tandemly repeated in a group of LEA proteins of vastly different sizes. Analysis of this motif suggests that it exists as an amphiphilic helix which may serve as the basis for higher order structure.  相似文献   

12.
Late embryogenesis abundant (LEA) proteins are accumulated by anhydrobiotic organisms in response to desiccation and improve survivorship during water stress. In this study we provide the first direct evidence for the subcellular localizations of AfrLEA2 and AfrLEA3m (and its subforms) in anhydrobiotic embryos of Artemia franciscana. Immunohistochemistry shows AfrLEA2 to reside in the cytoplasm and nucleus, and the four AfrLEA3m proteins to be localized to the mitochondrion. Cellular locations are supported by Western blots of mitochondrial, nuclear and cytoplasmic fractions. The presence of LEA proteins in multiple subcellular compartments of A. franciscana embryos suggests the need to protect biological structures in many areas of a cell in order for an organism to survive desiccation stress, and may explain in part why a multitude of different LEA proteins are expressed by a single organism.  相似文献   

13.
Nowadays various protein medicines are increasingly playing a key role on treatment of many diseases, while the bioactivity of such kinds of protein medicines is unstable because of their heat sensitivity. In order to explore a protective method and to explain the protective mechanism of protein medicines, the bioactive protection of the late embryogenesis abundant (LEA) protein to insulin was researched by molecular dynamics simulation. The results suggest that LEA proteins preserve the native structure of the insulin well. Compared with the desiccated insulin without any protection, the structure of insulin protected by LEA protein have smaller values, more centralised configurational space, lower free energies and structural cluster more closer to the native structure. All the above results prove that the LEA protein does protect the bioactivity of insulin during desiccation. The LEA protein is a perfect bioactive protectant for heat-sensitive protein medicines. Such LEA proteins can match the shape of insulin and form multisite binding interaction with insulin.  相似文献   

14.
Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis—life without water—during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications.  相似文献   

15.
Two New Group 3 LEA Genes of Wheat and Their Functional Analysis in Yeast   总被引:4,自引:0,他引:4  
The group 3 late embryogenesis abundant (LEA) proteins are thought to protect cells from stresses associated with dehydration during periods of water deficit. To investigate the functions of different members of the group 3 LEA genes, we isolated and characterized two new group 3 LEA genes, namely TaLEA2 and TaLEA3, from wheat (Triticum aestivum L.) and introduced TaLEA2 and TaLEA3 into Saccharmyces cerevisiae to examine the effect of these genes on yeast cell tolerance to osmotic, salt, and cold stresses. The TaLEA2 gene encoded a protein of 211 amino acids and possessed five repeats of 11-mer amino acid motifs. The TaLEA3 gene encoded a polypeptide of 211 amino acids with nine repeated units. Overexpression of TaLEA2 and TaLEA3 improved stress tolerance in transgenic yeast cells when cultured in medium containing sorbitol, salt and-20℃ freezing treatments respectively. However, the yeast transformants with TaLEA2 seemed to be more tolerant to hyperosmotic and freezing stress than transformants with TaLEA3. This implies that a close relationship exists between function and the number of repeats of the 11- mer amino acid motif in the group 3 LEA protein.  相似文献   

16.
17.
18.
Humidity has a large impact on the distribution and abundance of terrestrial invertebrates, but the molecular mechanisms governing drought resistance are not fully understood. Some attention has been given to the role of the heat shock response as a component of desiccation tolerance, but recent focus has been on the chaperone-like LEA (late embryogenesis abundant) proteins in anhydrobiotic animals. This study investigates the expression of putative LEA proteins as well as the heat shock protein Hsp70 during drought stress in soil and surface dwelling species of Collembola (springtails). In silico analysis of four EST candidates from two species of Collembola showed the presence of a Group 3 LEA protein in Megaphorura arctica. In common with other Group 3 LEA proteins, the new sequence is predicted to be 100% natively unfolded, with a strong degree of lysine and alanine periodicity and with a negative average hydrophobicity of −1.273. The sequence clusters with members of the Group 3 LEA in plants. Furthermore, cross-species Western blotting showed drought-induced expression of putative LEA proteins in six species of Collembola. In the surface dwelling species, Orchesella cincta, degree of dehydration and length of exposure correlated with level of putative LEA protein. Hsp70 was also found to increase in individuals of O. cincta and Folsomia candida that had been exposed to drought conditions for 6 days. These results show the presence of a LEA protein-coding region in Collembola, but also indicate that several proteins are involved in response to dehydration stress, including Hsp70.  相似文献   

19.
We investigated whether a model peptide for group 3 LEA (G3LEA) proteins we developed in previous studies can protect liposomes from desiccation damage. Four different peptides were compared: 1) PvLEA-22, which consists of two tandem repeats of the 11-mer motif characteristic of LEA proteins from the African sleeping chironomid; 2) a peptide with amino acid composition identical to that of PvLEA-22, but with its sequence scrambled; 3) poly-l-glutamic acid; and 4) poly-l-lysine. Peptides 1) and 2) protected liposomes composed of 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) against fusion caused by desiccation, as revealed by particle size distribution measurements with dynamic light scattering. Indeed, liposomes maintain their pre-stress size distribution when these peptides are added at a peptide/POPC molar ratio of more than 0.5. Interestingly, peptide 1) achieved the comparable or higher retention of a fluorescent probe inside liposomes than did several native LEA proteins published previously. In contrast, the other peptides exhibited less protective effects. These results demonstrate that the synthetic peptide derived from the G3LEA protein sequence can suppress desiccation-induced liposome fusion. Fourier transform infrared (FT-IR) spectroscopic measurements were performed for the dried mixture of each peptide and liposome. Based on results for the gel-to-liquid crystalline phase transition temperature of the liposome and the secondary structure of the peptide backbone, we discuss possible underlying mechanisms for the protection effect of the synthetic peptide on dried liposomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号