首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effect of fluorescent probe on the properties of membranes, we studied model membranes composed of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the presence and absence of fluorescent probe. The morphology of giant unilamellar vesicles (GUVs) has been observed as a function of temperature and composition by fluorescence microscopy using NBD-DOPE or C6-NBD-PC as the probe. The phase behavior of model membranes containing no fluorescent probe was investigated by 2H-NMR spectroscopy. We found that the bright phase observed on GUVs was the fluid phase enriched in POPC and the dark phase was the gel phase enriched in DPPC. NBD-DOPE and C6-NBD-PC preferentially participated in the fluid-phase domains when GUVs were in the gel?+?fluid phase coexistence. Inclusion of both fluorescent probes (1?mol%) lowered the transition temperature of POPC/DPPC membranes. In addition, C6-NBD-PC exhibited a stronger effect than NBD-DOPE, which was considered to be associated with the structures of fluorescent molecules.  相似文献   

2.
The use of giant unilamellar vesicles (GUVs) for investigating the properties of biomembranes is advantageous compared to the use of small-sized vesicles such as large unilamellar vesicles (LUVs). Experimental methods using GUVs, such as the single GUV method, would benefit if there was a methodology for obtaining a large population of similar-sized GUVs composed of oil-free membranes. We here describe a new membrane filtering method for purifying GUVs prepared by the natural swelling method and demonstrate that, following purification of GUVs composed of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes suspended in a buffer, similar-sized GUVs with diameters of 10–30 μm are obtained. Moreover, this method enabled GUVs to be separated from water-soluble fluorescent probes and LUVs. These results suggest that the membrane filtering method can be applied to GUVs prepared by other methods to purify larger-sized GUVs from smaller GUVs, LUVs, and various water-soluble substances such as proteins and fluorescent probes. This method can also be used for concentration of dilute GUV suspensions.  相似文献   

3.
《Biophysical journal》2021,120(17):3787-3794
Cellular life relies on membranes, which provide a resilient and adaptive cell boundary. Many essential processes depend upon the ease with which the membrane is able to deform and bend, features that can be characterized by the bending rigidity. Quantitative investigations of such mechanical properties of biological membranes have primarily been undertaken in solely lipid bilayers and frequently in the absence of buffers. In contrast, much less is known about the influence of integral membrane proteins on bending rigidity under physiological conditions. We focus on an exemplar member of the ubiquitous major facilitator superfamily of transporters and assess the influence of lactose permease on the bending rigidity of lipid bilayers. Fluctuation analysis of giant unilamellar vesicles (GUVs) is a useful means to measure bending rigidity. We find that using a hydrogel substrate produces GUVs that are well suited to fluctuation analysis. Moreover, the hydrogel method is amenable to both physiological salt concentrations and anionic lipids, which are important to mimic key aspects of the native lactose permease membrane. Varying the fraction of the anionic lipid in the lipid mixture DOPC/DOPE/DOPG allows us to assess the dependence of membrane bending rigidity on the topology and concentration of an integral membrane protein in the lipid bilayer of GUVs. The bending rigidity gradually increases with the incorporation of lactose permease, but there is no further increase with greater amounts of the protein in the membrane.  相似文献   

4.
Li L  Cheng JX 《Biochemistry》2006,45(39):11819-11826
We report a new type of gel-liquid phase segregation in giant unilamellar vesicles (GUVs) of mixed lipids. Coexisting patch- and stripe-shaped gel domains in GUV bilayers composed of DOPC/DPPC or DLPC/DPPC are observed by confocal fluorescence microscopy. The lipids in stripe domains are shown to be tilted according to the DiIC18 fluorescence intensity dependence on the excitation polarization. The patch domains are found to be mainly composed of DPPC-d62 according to the coherent anti-Stokes Raman scattering (CARS) images of DOPC/DPPC-d62 bilayers. When cooling GUVs from above the miscibility temperature, the patch domains start to appear between the chain melting and the pretransition temperature of DPPC. In GUVs containing a high molar percentage of DPPC, the stripe domains form below the pretransition temperature. Our observations suggest that the patch and stripe domains are in the Pbeta' and Lbeta' gel phases, respectively. According to the thermoelastic properties of GUVs described by Needham and Evans [(1988) Biochemistry 27, 8261-8269], the Pbeta' and Lbeta' phases are formed at relatively low and high membrane tensions, respectively. GUVs with high DPPC percentage have high membrane surface tension and thus mainly exhibit Lbeta' domains, while GUVs with low DPPC percentage have low membrane surface tension and form Pbeta' domains accordingly. Adding negatively charged lipid to the lipid mixtures or applying an osmotic pressure to GUVs using sucrose solutions releases the surface tension and leads to the disappearance of the Lbeta' gel phase. The relationship between the observed domains in free-standing GUV bilayers and those in supported bilayers is discussed.  相似文献   

5.
The understanding of lipid bilayer structure and function has been advanced by the application of molecular fluorophores. However, the effects of these probe molecules on the physicochemical properties of membranes being studied are poorly understood. A quartz crystal microbalance with dissipation monitoring instrument was used in this work to investigate the impact of two commonly used fluorescent probes, 1‑palmitoyl‑2‑{12‑[(7‑nitro‑2‑1,3‑benzoxadiazol‑4‑yl)amino]dodecanoyl}‑sn‑glycero‑3‑phosphocholine (NBD-PC) and 1,2‑dipalmitoyl‑sn‑glycero‑3‑phosphoethanolamine‑n‑(lissamine rhodamine‑B‑sulfonyl) (Lis-Rhod PE), on the formation and physicochemical properties of a 1‑palmitoyl‑2‑oleoyl‑sn‑glycero‑3‑phosphocholine supported lipid bilayer (POPC-SLB). The interaction of the POPC-SLB and fluorophore-modified POPC-SLB with docosahexaenoic acid, DHA, was evaluated. The incorporation of DHA into the POPC-SLB was observed to significantly decrease in the presence of the Lis-Rhod PE probe compared with the POPC-SLB. In addition, it was observed that the small concentration of DHA incorporated into the POPC:NBD-PC SLB can produce rearrangement processes followed by the lost not only of DHA but also of POPC or NBD-PC molecules or both during the washing step. This work has significant implications for the interpretation of data employing fluorescent reporter molecules within SLBs.  相似文献   

6.
The feasibility of applying multiphoton excitation fluorescence microscopy-related techniques in planar membrane systems, such as lipid monolayers at the air-water interface (named Langmuir films), is presented and discussed in this paper. The non-linear fluorescence microscopy approach, allows obtaining spatially and temporally resolved information by exploiting the fluorescent properties of particular fluorescence probes. For instance, the use of environmental sensitive probes, such as LAURDAN, allows performing measurements using the LAURDAN generalized polarization function that in turn is sensitive to the local lipid packing in the membrane. The fact that LAURDAN exhibit homogeneous distribution in monolayers, particularly in systems displaying domain coexistence, overcomes a general problem observed when “classical” fluorescence probes are used to label Langmuir films, i.e. the inability to obtain simultaneous information from the two coexisting membrane regions. Also, the well described photoselection effect caused by excitation light on LAURDAN allows: (i) to qualitative infer tilting information of the monolayer when liquid condensed phases are present and (ii) to provide high contrast to visualize 3D membranous structures at the film's collapse pressure. In the last case, computation of the LAURDAN GP function provides information about lipid packing in these 3D structures. Additionally, LAURDAN GP values upon compression in monolayers were compared with those obtained in compositionally similar planar bilayer systems. At similar GP values we found, for both DOPC and DPPC, a correspondence between the molecular areas reported in monolayers and bilayers. This correspondence occurs when the lateral pressure of the monolayer is 26 ± 2 mN/m and 28 ± 3 mN/m for DOPC and DPPC, respectively.  相似文献   

7.
Phase separation phenomena in hybrid lipid/block copolymer/cholesterol bilayers combining polybutadiene-block-polyethylene oxide (PBdPEO), egg sphingomyelin (egg SM), and cholesterol were studied with fluorescence spectroscopy and microscopy for comparison to lipid bilayers composed of palmitoyl oleoyl phosphatidylcholine (POPC), egg SM, and cholesterol. Laurdan emission spectra were decomposed into three lognormal curves. The temperature dependence of the ratios of the areas of the middle and lowest energy peaks revealed temperature break-point (Tbreak) values that were in better agreement, compared to generalized polarization inflection temperatures, with phase transition temperatures in giant unilamellar vesicles (GUVs). Agreement between GUV and spectroscopy results was further improved for hybrid vesicles by using the ratio of the area of the middle peak to the sum of the areas all three peaks to find the Tbreak values. For the hybrid vesicles, trends at Tbreak are hypothesized to be correlated with the mechanisms by which the phase transition takes place, supported by the compositional range as well as the morphologies of domains observed in GUVs. Low miscibility of PBdPEO and egg SM is suggested by the finding of relatively high Tbreak values at cholesterol contents greater than 30 mol%. Further, GUV phase behavior suggests stronger partitioning of cholesterol into PBdPEO than into POPC, and less miscibility of PBdPEO than POPC with egg SM. These results, summarized using a heat-map, contribute to the limited body of knowledge regarding the effect of cholesterol on hybrid membranes, with potential application toward the development of such materials for drug delivery or membrane protein reconstitution.  相似文献   

8.
Oxidation of unsaturated membrane phospholipids by oxidative stress is associated with inflammation, infection, numerous diseases and neurodegenerative disorders. Lipid oxidation is observed in experimental samples when the parent lipid is exposed to oxidative stressors. The effect of phospholipid oxidation on the properties of biological membranes are still being explored, while low concentrations (0.1–2.0?mol%) of oxidised phospholipids are associated with disease states [1]. Previous computational studies have focused on the effect of high concentrations (~50?mol%) of oxidised phospholipids on binary lipid bilayers. This work systematically characterises the effect of lower concentrations (~10?mol%) of two oxidised lipid species, PoxnoPC (1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine) or PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine), on POPC/cholesterol and pure POPC bilayers. During μs atomistic simulations in pure POPC bilayers, PoxnoPC and PazePC reoriented their oxidised sn-2 acyl chains towards the solution, and PazePC adopted an extended conformation. The addition of 20?mol% cholesterol not only modulated the fluidity of the bilayers; it also modulated the flexibility of the PoxnoPC oxidised sn-2 tail, reducing bilayer disorder. In contrast, the addition of cholesterol had little effect on bilayers containing PazePC. Our studies show that the effect of oxidised lipids on the biophysical properties of a multicomponent bilayer cannot be intuitively extrapolated from a binary lipid system.  相似文献   

9.
Images of giant unilamellar vesicles (GUVs) formed by different phospholipid mixtures (1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1, 2-dilauroyl-sn-glycero-3-phosphocholine (DPPC/DLPC) 1:1 (mol/mol), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPE/DPPC), 7:3 and 3:7 (mol/mol) at different temperatures were obtained by exploiting the sectioning capability of a two-photon excitation fluorescence microscope. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN), 6-propionyl-2-dimethylamino-naphthalene (PRODAN), and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE) were used as fluorescent probes to reveal domain coexistence in the GUVs. We report the first characterization of the morphology of lipid domains in unsupported lipid bilayers. From the LAURDAN intensity images the excitation generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domain. On the basis of the phase diagram of each lipid mixture, we found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region in all lipid mixtures. At temperatures corresponding to the phase coexistence region we observed lipid domains of different sizes and shapes, depending on the lipid sample composition. In the case of GUVs formed by DPPE/DPPC mixture, the gel DPPE domains present different shapes, such as hexagonal, rhombic, six-cornered star, dumbbell, or dendritic. At the phase coexistence region, the gel DPPE domains are moving and growing as the temperature decreases. Separated domains remain in the GUVs at temperatures corresponding to the solid region, showing solid-solid immiscibility. A different morphology was found in GUVs composed of DLPC/DPPC 1:1 (mol/mol) mixtures. At temperatures corresponding to the phase coexistence, we observed the gel domains as line defects in the GUV surface. These lines move and become thicker as the temperature decreases. As judged by the LAURDAN GP histogram, we concluded that the lipid phase characteristics at the phase coexistence region are different between the DPPE/DPPC and DLPC/DPPC mixtures. In the DPPE/DPPC mixture the coexistence is between pure gel and pure liquid domains, while in the DLPC/DPPC 1:1 (mol/mol) mixture we observed a strong influence of one phase on the other. In all cases the domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This observation is also novel for unsupported lipid bilayers.  相似文献   

10.
We compared the lateral structure of giant unilamellar vesicles (GUVs) composed of three pseudo binary mixtures of different glycosphingolipid (GSL), i.e. sulfatide, asialo-GM1 or GM1, with POPC. These sphingolipids possess similar hydrophobic residues but differ in the size and charge of their polar head group. Fluorescence microscopy experiments using LAURDAN and DiIC18 show coexistence of micron sized domains in a molar fraction range that depends on the nature of the GSLs. In all cases, experiments with LAURDAN show that the membrane lateral structure resembles the coexistence of solid ordered and liquid disordered phases. Notably, the overall extent of hydration measured by LAURDAN between the solid ordered and liquid disordered membrane regions show marked similarities and are independent of the size of the GSL polar head group. In addition, the maximum amount of GSL incorporated in the POPC bilayer exhibits a strong dependence on the size of the GSL polar head group following the order sulfatide > asialo-GM1 > GM1. This observation is in full harmony with previous experiments and theoretical predictions for mixtures of these GSL with glycerophospholipids. Finally, compared with previous results reported in GUVs composed of mixtures of POPC with the sphingolipids cerebroside and ceramide, we observed distinctive curvature effects at particular molar fraction regimes in the different mixtures. This suggests a pronounced effect of these GSL on the spontaneous curvature of the bilayer. This observation may be relevant in a biological context, particularly in connection with the highly curved structures found in neural cells.  相似文献   

11.
12.
We suggest a novel approach for direct optical microscopy observation of DNA interaction with the bilayers of giant cationic liposomes. Giant unilamellar vesicles, about 100 μm in diameter, made of phosphatidylcholines and up to 33 mol% of the natural bioactive cationic amphiphile sphingosine, were obtained by electroformation. “Short” DNAs (oligonucleotide 21b and calf thymus 250 bp) were locally injected by micropipette to a part of the giant unilamellar vesicle (GUV) membrane. DNAs were injected native, as well as marked with a fluorescent dye. The resulting membrane topology transformations were monitored in phase contrast, while DNA distribution was followed in fluorescence. We observed DNA-induced endocytosis due to the DNA/lipid membrane local interactions and complex formation. A characteristic minimum concentration (C endo) of d-erythro-sphingosine (Sph+) in the GUV membrane was necessary for the endocytic phenomenon to occur. Below C endo, only lateral adhesions between neighboring vesicles were observed upon DNA local addition. C endo depends on the type of zwitterionic (phosphocholine) lipid used, being about 10 mol% for DPhPC/Sph+ GUVs and about 20 mol% for SOPC/Sph+ or eggPC/Sph+ GUVs. The characteristic sizes and shapes of the resulting endosomes depend on the kind of DNA, and initial GUV membrane tension. When the fluorescent DNA marker dye was injected after the DNA/lipid local interaction and complex formation, no fluorescence was detected. This observation could be explained if one assumes that the DNA is protected by lipids in the DNA/lipid complex, thereby inaccessible for the dye molecules. We suggest a possible mechanism for DNA/lipid membrane interaction involving DNA encapsulation within an inverted micelle included in the lipid membrane. Our model observations could help in understanding events associated with the interaction of DNA with biological membranes, as well as cationic liposomes/DNA complex formation in gene transfer processes. Received: 18 April 1998 / Revised version: 6 August 1998 / Accepted: 7 August 1998  相似文献   

13.
The efficiency of pulmonary surfactant to stabilize the respiratory surface depends critically on the ability of surfactant to form highly packed films at the air-liquid interface. In the present study we have compared the packing and hydration properties of lipids in native pulmonary surfactant and in several surfactant models by analyzing the pressure and temperature dependence of the fluorescence emission of the LAURDAN (1-[6-(dimethylamino)-2-naphthyl]dodecan-1-one) probe incorporated into surfactant interfacial films or free-standing membranes. In interfacial films, compression-driven changes in the fluorescence of LAURDAN, evaluated from the generalized polarization function (GPF), correlated with changes in packing monitored by surface pressure. Compression isotherms and GPF profiles of films formed by native surfactant or its organic extract were compared at 25 or 37 °C to those of films made of dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), DPPC/phosphatidylglycerol (PG) (7:3, w/w), or the mixture DPPC/POPC/palmitoyloleoylphosphatidylglycerol (POPG)/cholesterol (Chol) (50:25:15.10), which simulates the lipid composition of surfactant. In general terms, compression of surfactant films at 25 °C leads to LAURDAN GPF values close to those obtained from pure DPPC monolayers, suggesting that compressed surfactant films reach a dehydrated state of the lipid surface, which is similar to that achieved in DPPC monolayers. However, at 37 °C, the highest GPF values were achieved in films made of full surfactant organic extract or the mixture DPPC/POPC/POPG/Chol, suggesting a potentially important role of cholesterol to ensure maximal packing/dehydration under physiological constraints. Native surfactant films reached high pressures at 37 °C while maintaining relatively low GPF, suggesting that the complex three-dimensional structures formed by whole surfactant might withstand the highest pressures without necessarily achieving full dehydration of the lipid environments sensed by LAURDAN. Finally, comparison of the thermotropic profiles of LAURDAN GPF in surfactant model bilayers and monolayers of analogous composition shows that the fluorophore probes an environment that is in average intrinsically more hydrated at the interface than inserted into free-standing bilayers, particularly at 37 °C. This effect suggests that the dependence of membrane and surfactant events on the balance of polar/non-polar interactions could differ in bilayer and monolayer models, and might be affected differently by the access of water molecules to confined or free-standing lipid structures.  相似文献   

14.
Membrane fusion is a ubiquitous process in biology and is a prerequisite for many intracellular delivery protocols relying on the use of liposomes as drug carriers. Here, we investigate in detail the process of membrane fusion and the role of opposite charges in a protein-free lipid system based on cationic liposomes (LUVs, large unilamellar vesicles) and anionic giant unilamellar vesicles (GUVs) composed of different palmitoyloleoylphosphatidylcholine (POPC)/palmitoyloleoylphosphatidylglycerol (POPG) molar ratios. By using a set of optical-microscopy- and microfluidics-based methods, we show that liposomes strongly dock to GUVs of pure POPC or low POPG fraction (up to 10 mol%) in a process mainly associated with hemifusion and membrane tension increase, commonly leading to GUV rupture. On the other hand, docked LUVs quickly and very efficiently fuse with negative GUVs of POPG fractions at or above 20 mol%, resulting in dramatic GUV area increase in a charge-dependent manner; the vesicle area increase is deduced from GUV electrodeformation. Importantly, both hemifusion and full fusion are leakage-free. Fusion efficiency is quantified by the lipid transfer from liposomes to GUVs using fluorescence resonance energy transfer (FRET), which leads to consistent results when compared to fluorescence-lifetime-based FRET. We develop an approach to deduce the final composition of single GUVs after fusion based on the FRET efficiency. The results suggest that fusion is driven by membrane charge and appears to proceed up to charge neutralization of the acceptor GUV.  相似文献   

15.
The effect of temperature on the lateral structure of lipid bilayers composed of porcine brain ceramide and 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC), with and without addition of cholesterol, were studied using differential scanning calorimetry, Fourier transformed infrared spectroscopy, atomic force microscopy, and confocal/two-photon excitation fluorescence microscopy (which included LAURDAN generalized polarization function images). A broad gel/fluid phase coexistence temperature regime, characterized by the presence of micrometer-sized gel-phase domains with stripe and flowerlike shapes, was observed for different POPC/ceramide mixtures (up to approximately 25 mol % ceramide). This observed phase coexistence scenario is in contrast to that reported previously for this mixture, where absence of gel/fluid phase coexistence was claimed using bulk LAURDAN generalized polarization (GP) measurements. We demonstrate that this apparent discrepancy (based on the direct comparison between the LAURDAN GP data obtained in the microscope and the fluorometer) disappears when the additive property of the LAURDAN GP function is taken into account to examine the data obtained using bulk fluorescence measurements. Addition of cholesterol to the POPC/ceramide mixtures shows a gradual transition from a gel/fluid to gel/liquid-ordered phase coexistence scenario as indicated by the different experimental techniques used in our experiments. This last result suggests the absence of fluid-ordered/fluid-disordered phase coexistence in the ternary mixtures studied in contrast to that observed at similar molar concentrations with other ceramide-base-containing lipid mixtures (such as POPC/sphingomyelin/cholesterol, which is used as a canonical raft model membrane). Additionally, we observe a critical cholesterol concentration in the ternary mixtures that generates a peculiar lateral pattern characterized by the observation of three distinct regions in the membrane.  相似文献   

16.
One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers and in giant unilamellar vesicles (GUVs) formed from 1) equimolar mixtures of phospholipid-cholesterol-sphingomyelin or 2) natural lipids extracted from brush border membranes that are rich in sphingomyelin and cholesterol. Employing headgroup-labeled fluorescent phospholipid analogs in planar supported lipid layers, domains typically several microns in diameter were observed by fluorescence microscopy at room temperature (24 degrees C) whereas non-raft mixtures (PC-cholesterol) appeared homogeneous. Both raft and non-raft domains were fluid-like, although diffusion was slower in raft domains, and the probe could exchange between the two phases. Consistent with the raft hypothesis, GM1, a glycosphingolipid (GSL), was highly enriched in the more ordered domains and resistant to detergent extraction, which disrupted the GSL-depleted phase. To exclude the possibility that the domain structure was an artifact caused by the lipid layer support, GUVs were formed from the synthetic and natural lipid mixtures, in which the probe, LAURDAN, was incorporated. The emission spectrum of LAURDAN was examined by two-photon fluorescence microscopy, which allowed identification of regions with high or low order of lipid acyl chain alignment. In GUVs formed from the raft lipid mixture or from brush border membrane lipids an array of more ordered and less ordered domains that were in register in both monolayers could reversibly be formed and disrupted upon cooling and heating. Overall, the notion that in biomembranes selected lipids could laterally aggregate to form more ordered, detergent-resistant lipid rafts into which glycosphingolipids partition is strongly supported by this study.  相似文献   

17.
The liquid-liquid (Ld + Lo) coexistence region within a distearoyl-phosphatidylcholine/dioleoyl-phosphatidylcholine/palmitoyl-oleoyl-phosphatidylcholine/cholesterol (DSPC/DOPC/POPC/CHOL) mixture displays a nanoscopic-to-macroscopic transition of phase domains as POPC is replaced by DOPC. Previously, we showed that the transition goes through a modulated phase regime during this replacement, in which patterned liquid phase morphologies are observed on giant unilamellar vesicles (GUVs). Here, we describe a more detailed investigation of the modulated phase regime along two different thermodynamic tielines within the Ld + Lo region of this four-component mixture. Using fluorescence microscopy of GUVs, we found that the modulated phase regime occurs at relatively narrow DOPC/(DOPC+POPC) ratios. This modulated phase window shifts to higher values of DOPC/(DOPC+POPC) when CHOL concentration is increased, and coexisting phases become closer in properties. Monte Carlo simulations reproduced the patterns observed on GUVs, using a competing interactions model of line tension and curvature energies. Sufficiently low line tension and high bending moduli are required to generate stable modulated phases. Altogether, our studies indicate that by tuning the lipid composition, both the domain size and morphology can be altered drastically within a narrow composition space. This lends insight into a possible mechanism whereby cells can reorganize plasma membrane compartmentalization simply by tuning the local membrane composition or line tension.  相似文献   

18.
(31)P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in (31)P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid (31)P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type (31)P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.  相似文献   

19.
Giant liposomes obtained by electroformation and observed by phase-contrast video microscopy show spontaneous deformations originating from Brownian motion that are characterized, in the case of quasispherical vesicles, by two parameters only, the membrane tension sigma and the bending elasticity k(c). For liposomes containing dimyristoyl phosphatidylcholine (DMPC) or a 10 mol% cholesterol/DMPC mixture, the mechanical property of the membrane, k(c), is shown to be temperature dependent on approaching the main (thermotropic) phase transition temperature T(m). In the case of DMPC/cholesterol bilayers, we also obtained evidence for a relation between the bending elasticity and the corresponding temperature/cholesterol molecular ratio phase diagram. Comparison of DMPC/cholesterol with DMPC/cholesterol sulfate bilayers at 30 degrees C containing 30% sterol ratio shows that k(c) is independent of the surface charge density of the bilayer. Finally, bending elasticities of red blood cell (RBC) total lipid extracts lead to a very low k(c) at 37 degrees C if we refer to DMPC/cholesterol bilayers. At 25 degrees C, the very low bending elasticity of a cholesterol-free RBC lipid extract seems to be related to a phase coexistence, as it can be observed by solid-state (31)P-NMR. At the same temperature, the cholesterol-containing RBC lipid extract membrane shows an increase in the bending constant comparable to the one observed for a high cholesterol ratio in DMPC membranes.  相似文献   

20.
31P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in 31P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid 31P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type 31P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号