首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a “Ca2+ clock” controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca2+-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130–150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.  相似文献   

2.
Cell-death and -survival decisions are critically controlled by intracellular Ca2 + homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca2 + flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca2 + signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca2 +, Ca2 +-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca2 + store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca2 + leak. Third, we will review the regulation of the Ca2 +-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

3.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.  相似文献   

4.
Phorbol dibutyrate (PDBu) binding to rat prostatic epithelial cells has been measured as an indirect determination of protein kinase C in this cell system. Analysis of [3H]PDBu binding using competitive displacement demonstrated a single class of PDBu receptors with a Kd=141 nM and a binding capacity of 4.8 pmol PDBu bound/mg cell protein. Raising cytosolic Ca2+ levels by redistribution of intracellular Ca2+ after cell treatment with carbachol or arachidonic acid (which also affects the bulk biophysical properties of the cell membrane) resulted in up-regulation of the available number of PDBu receptors. These results appear to be a consequence of PKC translocation from the cytosolic compartment to the plasma membrane after a cytosolic Ca2+ increase, confirming previous results in other cell systems.  相似文献   

5.
Summary 45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.  相似文献   

6.
Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca2+-ATPases and mammary calcium transport is unknown. We found that 24 h after stopping milk production, PMCA2 and secretory pathway Ca2+-ATPases 1 and 2 (SPCA1 and 2) expression decreased 80-95%. PMCA4 and Sarco/Endoplasmic Reticulum Ca2+-ATPase 2 (SERCA2) expression increased with the loss of PMCA2, SPCA1, and SPCA2 but did not increase until 72-96 h of involution. The rapid loss of these Ca2+-ATPases occurs at a time of high mammary tissue calcium. These results suggest that the abrupt loss of Ca2+-ATPases, required by the mammary gland to regulate the large amount of calcium associated with milk production, could lead to accumulation of cell calcium, mitochondria Ca2+ overload, calcium mediated cell death and thus play a part in early signaling of mammary involution.  相似文献   

7.
Cav2.3 containing voltage-activated Ca2 + channels are expressed in excitable cells and trigger neurotransmitter and peptide-hormone release. Their expression remote from the fast release sites leads to the accumulation of presynaptic Ca2 + which can both, facilitate and inhibit the influx of Ca2 + ions through Cav2.3. The facilitated Ca2 + influx was recently related to hippocampal postsynaptic facilitation and long term potentiation. To analyze Ca2 + mediated modulation of cellular processes more in detail, protein partners of the carboxy terminal tail of Cav2.3 were identified by yeast-2-hybrid screening, leading in two human cell lines to the detection of a novel, extended and rarely occurring splice variant of calmodulin-2 (CaM-2), called CaM-2-extended (CaM-2-ext). CaM-2-ext interacts biochemically with the C-terminus of Cav2.3 similar to the classical CaM-2 as shown by co-immunoprecipitation. Functionally, only CaM-2-ext reduces whole cell inward currents significantly. The insertion of the novel 46 nts long exon and the consecutive expression of CaM-2-ext must be dependent on a new upstream translation initiation site which is only rarely used in the tested human cell lines. The structure of the N-terminal extension is predicted to be more hydrophobic than the remaining CaM-2-ext protein, suggesting that it may help to dock it to the lipophilic membrane surrounding.  相似文献   

8.
Summary Calcium signaling systems in nonexcitable cells involve activation of Ca2+ entry across the plasma membrane and release from intracellular stores as well as activation of Ca2+ pumps and inhibition of passive Ca2+ pathways to ensure exact regulation of free cytosolic Ca2+ concentration ([Ca2+] i ). A431 cells loaded with fura-2 cells were used as a model system to examine regulation of Ca2+ entry and intracellular release. Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) both stimulated Ca2+ entry and release while bradykinin appeared only to release Ca2+ from intracellular stores. The possible role of protein kinase C (PKC) in modulating the [Ca2+] i response to these agonists was examined by four methods. Low concentrations of TPA (2×10–10 m) had no effect on Ca2+ release due to EGF, TGR- or bradykinin but resulted in a rapid return of [Ca2+] i to baseline levels for EGF or TGF-. Addition of the PKC inhibitor staurosporine (1 and 10nm)_completely inhibited the action of TPA on EGF-induced [Ca2+] i changes. An inhibitor of diglyceride kinase (R59022) mimicked the action of TPA. Down-regulation of PKC by overnight incubation with 0.1 or 1 m TPA produced the converse effect, namely prolonged Ca2+ entry following stimulation with EGF or TGF-. To show that one effect of TPA was on Ca2+ entry, fura-2 loaded cells were suspended in Mn2+ rather than Ca2+ buffers. Addition of EGF or TGF- resulted in Ca2+ release and Mn2+ entry. TPA but not the inactive phorbol ester, 4--phorbol-12,13-didecanoate, inhibited the Mn2+ influx. Thus, PKC is able to regulate Ca2+ entry due to EGF or TGF- in this cell type. A431 cells treated with higher concentrations of TPA (5×10–8 m) inhibited not only Ca2+ entry but also Ca2+ release due to EGF/TGF- but had no effect on bradykinin-mediated Ca2+ release, suggesting differences in the regulation of the intracellular stores responsive to these two classes of agonists. Furthermore, sequential addition of EGF or TGF- gave a single transient of [Ca2+] i , showing a common pool of Ca2+ for these agonists. In contrast, sequential addition of EGF (or TGF-) and bradykinin resulted in two [Ca2+] i transients equal in size to those obtained with a single agonist. Ionomycin alone was able to fully deplete intracellular Ca2+ stores, whereas ionomycin following either EGF (or TGF-) or bradykinin gave an elevation of the [Ca2+] i signal equal to that of the second agonist. These data indicate that there are separate pools of intracellular Ca2+ for EGF-mediated Ca2+ release which also respond differently to TPA.  相似文献   

9.
Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca2 + signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca2 +-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca2 + transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca2 + from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca2 + homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca2 + signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca2 + homeostasis, thereby decreasing mitochondrial Ca2 + uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca2 + homeostasis and dynamics.  相似文献   

10.
Sergio de la Fuente 《BBA》2010,1797(10):1727-1735
We have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400 μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200 μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5-10 mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7 μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7 μM, but its effect was hardly appreciable at 10 μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range.  相似文献   

11.
Oxidative stress remodels Ca2+ signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca2+/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca2+ signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca2+ current (ICa,L) in rat cardiomyocytes. A 5-min exposure of 1 mM H2O2 induced an increase in ICa,L, and this increase was sustained for ~ 1 h. The CaMKII inhibitor KN-93 fully reversed H2O2-induced LTF of ICa,L, indicating that sustained CaMKII activity underlies this oxidative stress-induced memory. Simultaneous inhibition of oxidation and autophosphorylation of CaMKII prevented the maintenance of LTF, suggesting that both mechanisms contribute to sustained CaMKII activity. We further found that sarcoplasmic reticulum Ca2+ release and mitochondrial ROS generation have critical roles in sustaining CaMKII activity via autophosphorylation- and oxidation-dependent mechanisms. Finally, we show that long-term remodeling of the cardiac action potential is induced by H2O2 via CaMKII. In conclusion, CaMKII and mitochondria confer oxidative stress-induced pathological cellular memory that leads to cardiac arrhythmia.  相似文献   

12.
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca2 +, as a signaling ion, largely contributes. Altered intracellular Ca2 + levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca2 + increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca2 + waves, thereby recruiting a larger group of cells. Intercellular Ca2+ wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels (‘half of a gap junction channel’). This review gives an overview of the current knowledge on Cx-mediated Ca2 + communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca2 + communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

13.
We examined crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways in individual human pancreatic cancer PANC-1 cells. Treatment of cells with insulin (10 ng/ml) for 5 min markedly enhanced the proportion of cells that display an increase in intracellular [Ca2+] induced by picomolar concentrations of the GPCR agonist neurotensin. Interestingly, insulin increased the proportion of a subpopulation of cells that exhibit intracellular [Ca2+] oscillations in response to neurotensin at concentrations as low as 50-200 pM. Insulin enhanced GPCR-induced Ca2+ signaling in a time- and dose-dependent manner; a marked potentiation was obtained after an exposure to a concentration of 10 ng/ml for 5 min. Treatment with the mTORC1 inhibitor rapamycin abrogated the increase in GPCR-induced [Ca2+]i oscillations produced by insulin. Our results identify a novel aspect in the crosstalk between insulin receptor and GPCR signaling systems in pancreatic cancer cells, namely that insulin increases the number of [Ca2+]i oscillating cells induced by physiological concentrations of GPCR agonists through an mTORC1-dependent pathway.  相似文献   

14.
Annexin A6 (AnxA6) belongs to a conserved family of Ca2+-dependent membrane-binding proteins. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in cellular membranes in a dynamic and reversible fashion, in particular during the regulation of endocytic and exocytic pathways. High amounts of AnxA6 sequester cholesterol in late endosomes, thereby lowering the levels of cholesterol in the Golgi and the plasma membrane. These AnxA6-dependent redistributions of cellular cholesterol pools give rise to reduced cytoplasmic phospholipase A2 (cPLA2) activity, retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. In addition to regulating cholesterol and caveolin distribution, AnxA6 acts as a scaffold/targeting protein for several signaling proteins, the best characterized being the Ca2+-dependent membrane targeting of p120GAP to downregulate Ras activity. AnxA6 also stimulates the Ca2+-inducible involvement of PKC in the regulation of HRas and possibly EGFR signal transduction pathways. The ability of AnxA6 to recruit regulators of the EGFR/Ras pathway is likely potentiated by AnxA6-induced actin remodeling. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to modulate intracellular cholesterol homeostasis, (ii) to create a scaffold for the formation of multifactorial signaling complexes, and (iii) to regulate transient membrane-actin interactions during endocytic and exocytic transport. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

15.
Over the past few years, it has become clear that an important mechanism by which large-conductance Ca2+-activated K+ channel (BKCa) activity is regulated is the tissue-specific expression of auxiliary β subunits. The first of these to be identified, β1, is expressed predominately in smooth muscle and causes dramatic effects, increasing the apparent affinity of the channel for Ca2+ 10-fold at 0 mV, and shifting the range of voltages over which the channel activates −80 mV at 9.1 μM Ca2+. With this study, we address the question: which aspects of BKCa gating are altered by β1 to bring about these effects: Ca2+ binding, voltage sensing, or the intrinsic energetics of channel opening? The approach we have taken is to express the β1 subunit together with the BKCa α subunit in Xenopus oocytes, and then to compare β1''s steady state effects over a wide range of Ca2+ concentrations and membrane voltages to those predicted by allosteric models whose parameters have been altered to mimic changes in the aspects of gating listed above. The results of our analysis suggest that much of β1''s steady state effects can be accounted for by a reduction in the intrinsic energy the channel must overcome to open and a decrease in its voltage sensitivity, with little change in the affinity of the channel for Ca2+ when it is either open or closed. Interestingly, however, the small changes in Ca2+ binding affinity suggested by our analysis (Kc 7.4 μM → 9.6 μM; Ko = 0.80 μM → 0.65 μM) do appear to be functionally important. We also show that β1 affects the mSlo conductance–voltage relation in the essential absence of Ca2+, shifting it +20 mV and reducing its apparent gating charge 38%, and we develop methods for distinguishing between alterations in Ca2+ binding and other aspects of BKCa channel gating that may be of general use.  相似文献   

16.
The expression of protein kinase C (PKC) isoforms and the modulation of Ca2+ mobilization by PKC were investigated in the human submandibular duct cell line A253. Three new PKC (nPKC) isoforms (, , and ) and one atypical PKC (aPKC) isoform () are expressed in this cell line. No classical PKC (cPKC) isoforms were present. The effects of the PKC activator phorbol 12-myristate-13-acetate (PMA) and of the PKC inhibitors calphostin C (CC) and bisindolymaleimide I (BSM) on inositol 1,4,5-trisphosphate (IP3) and Ca2+ responses to ATP and to thapsigargin (TG) were investigated. Pre-exposure to PMA inhibited IP3 formation, Ca2+ release and Ca2+ influx in response to ATP. Pre-exposure to CC or BSM slightly enhanced IP3 formation but inhibited the Ca2+ release and the Ca2+ influx induced by ATP. In contrast, pre-exposure to PMA did not modify the Ca2+ release induced by TG, but reduced the influx of Ca2+ seen in the presence of this Ca2+-ATPase inhibitor. These results suggest that PKC modulates elements of the IP3/Ca2+ signal transduction pathway in A253 cells by (1) inhibiting phosphatidylinositol turnover and altering the sensitivity of the Ca2+ channels to IP3, (2) altering the activity, the sensitivity to inhibitors, or the distribution of the TG-sensitive Ca2+ ATPase, and (3) modulating Ca2+ entry pathways.  相似文献   

17.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

18.
Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the Kd for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant Kd in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a Kd value of CaM with PMCA (5.8 ± 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (Kd = 9.8 ± 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM.  相似文献   

19.
Ca2+ homeostasis controls a diversity of cellular processes including proliferation and apoptosis. A very important aspect of Ca2+ signaling is how different Ca2+ signals are translated into specific cell functions. In T cells, Ca2+ signals are induced following the recognition of antigen by the T cell receptor and depend mainly on Ca2+ influx through store-operated CRAC channels, which are mediated by ORAI proteins following their activation by STIM proteins. The complete absence of Ca2+ influx caused by mutations in Stim1 and Orai1 leads to severe immunodeficiency. Here we summarize how Ca2+ signals are tuned to regulate important T cell functions as proliferation, apoptosis and tolerance, the latter one being a special state of immune cells in which they can no longer respond properly to an otherwise activating stimulus. Perturbations of Ca2+ signaling may be linked to immune suppressive diseases and autoimmune diseases.  相似文献   

20.
Mechanical stress plays a key role in bone remodeling. Previous studies showed that loading of mechanical stretch induces a rapid Ca2+ influx and subsequent activation of stress-activated protein kinase pathways in osteoblasts. However, the activation mechanism and its significance in bone remodeling have not been fully elucidated. Here we show that TAK1 MAPKKK was activated by cyclic stretch loading of MC3T3-E1 cells. Knockdown of TAK1 attenuated the stretch-induced activation of JNK, p38, and NF-κB. Extracellular (EGTA) or intracellular (BAPTA/AM) Ca2+ chelator prevented the stretch-induced activation of TAK1. Activation of TAK1 and its associated downstream signaling pathways were also suppressed by CaMKII inhibitors (KN-93 and KN-62). Furthermore, TAK1-mediated downstream pathways cooperatively induced the expression of IL-6 mRNA in the stretched MC3T3-E1 cells. We also confirmed that TAK1 mediates cyclic stretch-induced IL-6 protein synthesis in the cells using immunoblotting and ELISA. Finally, stretch loading of murine primary osteoblasts induced the expression of IL-6 mRNA via TAK1. Collectively, these data suggest that stretch-dependent Ca2+ influx activates TAK1 via CaMKII, leading to the enhanced expression of IL-6 through JNK, p38, and NF-κB pathways in osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号