首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plant phosphoproteomics: a long road ahead   总被引:3,自引:0,他引:3  
Phosphoproteomics can be defined as the comprehensive study of protein phosphorylation by identification of the phosphoproteins, exact mapping of the phosphorylation sites, quantification of phosphorylation, and eventually, revealing their biological function. Its place in today's research is vitally important to address the most fundamental question - how the phosphorylation events control most, if not all, of the cellular processes in a given organism? Despite the immense importance of phosphorylation, the analysis of phosphoproteins on a proteome-wide scale remains a formidable challenge. Nevertheless, several technologies have been developed, mostly in yeast and mammals, to conduct a large-scale phosphoproteomic study. Some of these technologies have been successfully applied to plants with a few modifications, resulting in documentation of phosphoproteins, phosphorylation site mapping, identification of protein kinase substrates, etc. at the global level. In this review, we summarize in vitro and in vivo approaches for detection and analysis of phosphoproteins including protein kinases and we discuss the importance of phosphoproteomics in understanding plant biology. These approaches along with bioinformatics will help plant researchers to design and apply suitable phosphoproteomic strategies in helping to find answers to their biological questions.  相似文献   

2.
Posttranslational modification (PTM) of proteins, particularly phosphorylation, is a key element in the regulation of cell functions. In many signal transduction processes, PTM is a pivotal step. Various analytical methods have been proposed for the identification of phosphoproteins; however, most of these methods require sophisticated equipment. Here we present an easily applicable method of phosphoprotein enrichment. This method is based on single-step precipitation by lanthanum chloride and allows subsequent protein identification by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-TOF-MS). The method proved its suitability for the isolation of phosphoproteins from frozen tissue and cultured cells samples after cell lysis in various buffer systems (urea/thiourea and EGTA/EDTA). The tests revealed that the isolation of phosphoproteins can be achieved with high efficiency even from complex protein mixtures. Our results indicate that lanthanum-based enrichment of phosphoproteins can be a useful tool in phosphoproteomic studies.  相似文献   

3.
Protein phosphorylation in plant mitochondria   总被引:1,自引:0,他引:1  
Reversible phosphorylation of proteins is one of the most common regulatory mechanisms in eukaryotic cells and it can affect virtually any property of a protein. We predict that plant mitochondria possess 50–200 protein kinases (PKs), at least as many target proteins and 10–30 protein phosphatases although all will not be expressed at the same time in the same cell type or tissue. Presently available high-throughput methods for the identification of phosphoproteins and their phosphorylation sites are first reviewed and a number of useful databases listed. We then discuss the known phosphoproteins, PKs and phosphatases in plant mitochondria and compare with yeast and mammalian mitochondria. Three case stories—respiratory chain complex I, pyruvate dehydrogenase and formate dehydrogenase—are briefly considered before a final treatment of mitochondrial protein phosphorylation in intracellular signal transduction and programmed cell death.  相似文献   

4.
O-linked N-acetylglucosamine (O-GlcNAc) is a highly dynamic post-translational modification of cytoplasmic and nuclear proteins. Although the function of this abundant modification is yet to be definitively elucidated, all O-GlcNAc proteins are phosphoproteins. Further, the serine and threonine residues substituted with O-GlcNAc are often sites of, or close to sites of, protein phosphorylation. This implies that there may be a dynamic interplay between these two post-translational modifications to regulate protein function. In this review, the functions of some of the proteins that are modified by O-GlcNAc will be considered in the context of the potential role of the O-GlcNAc modification. Furthermore, predictions will be made as to how cellular function and developmental regulation might be affected by changes in O-GlcNAc levels.  相似文献   

5.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.  相似文献   

6.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.  相似文献   

7.
The northeastern region of Thailand is well known to have a high incidence and mortality of cholangiocarcinoma (CCA). Protein phosphorylation status has been reported to reflect a key determinant of cellular physiology, but identification of phosphoproteins can be a problem due to the presence of phosphatase. Exosomes are stable toward circulating proteases and other enzymes in human blood and can be recognized before the onset of cancer progression. Here an in vitro metastatic model of isogenic CCA cells is used to provide insight into the phosphorylation levels of exosomal proteins derived from highly invasive cells. Gel‐based and gel‐free proteomics approaches are used to reveal the proteins differentially phosphorylated in relation to tumor cell phenotypes. Forty‐three phosphoproteins are identified with a significant change in phosphorylation level. Phos‐tag western blotting and immunohistochemistry staining are then employed to validate the candidate phosphoproteins. Heat shock protein 90 is successfully confirmed as being differentially phosphorylated in relation to tumor malignancy. Importantly, the aberrant phosphorylation of exosomal proteins might serve as a promising tool for the development of a biomarker for metastatic CCA.  相似文献   

8.
We have undertaken a comprehensive analysis of cytoplasmic protein phosphorylation in Campylobacter jejuni by mass spectrometric identification of phosphoproteins and localization of the sites of modification by phosphopeptide analyses. Cell extracts, enriched for phosphoproteins using Fe(III) IMAC or commercial phosphoprotein purification kits, were analyzed by 1-D and 2-D SDS-PAGE and subjected to mass fingerprinting by in-gel tryptic digestion and MALDI-TOF MS. Fifty-eight phosphopeptides were identified from 1-D gel bands by nano-LC-MS/MS and automated searching in a C. jejuni ORF database resulting in the unequivocal identification of 36 phosphoproteins of diverse function. In addition to elongation factors and chaperonins, which have been reported to be phosphorylated in other bacteria, the major phosphoproteins included bacterioferritin and superoxide dismutase. The sequences around the phosphorylated Ser and Thr residues are indicative of specific kinases being responsible for some of the modifications. However, many of the other identified proteins are enzymes that have phosphorylated substrates, including ATP, hence other modifications may arise from autophosphorylation. Comparative analyses of IMAC extracts from the Escherichia coli strain AD202 and Helicobacter pylori resulted in the identification of homologs of six of the C. jejuni phosphoproteins, though their overall phosphoproteome maps were distinctly different.  相似文献   

9.
Protein phosphorylation is a post-translational modification widely used to regulate cellular responses. Recent studies showed that global phosphorylation analysis could be used to study signaling pathways and to identify targets of protein kinases in cells. A key objective of global phosphorylation analysis is to obtain an in-depth mapping of low abundance protein phosphorylation in cells; this necessitates the use of suitable separation techniques because of the complexity of the phosphoproteome. Here we developed a multidimensional chromatography technology, combining IMAC, hydrophilic interaction chromatography, and reverse phase LC, for phosphopeptide purification and fractionation. Its application to the yeast Saccharomyces cerevisiae after DNA damage led to the identification of 8764 unique phosphopeptides from 2278 phosphoproteins using tandem MS. Analysis of two low abundance proteins, Rad9 and Mrc1, revealed that approximately 50% of their phosphorylation was identified via this global phosphorylation analysis. Thus, this technology is suited for in-depth phosphoproteome studies.  相似文献   

10.
Reversible protein phosphorylation is an essential mechanism in the regulation of diverse biological processes, nonetheless is frequently altered in disease. As most phosphoproteome studies are based on optimized in-vitro cell culture studies new methods are in need to improve de novo identification and characterization of phosphoproteins in extracts from tissues. Here, we describe a rapid and reliable method for the detection of phosphoproteins in tissue extract based on an experimental strategy that employs 1D and 2D SDS PAGE, Western immunoblotting of phosphoproteins, in-gel protease digestion and enrichment of phosphorpeptides using metal oxide affinity chromatography (MOAC). Subsequently, phosphoproteins are identified by MALDI-TOF-MS/MS with the CHCA-TL or DHB ML sample matrix preparation method and further characterized by various bioinformatic software tools to search for candidate kinases and phosphorylation-dependent binding motifs. The method was applied to mouse lung tissue extracts and resulted in an identification of 160 unique phosphoproteins. Notably, TiO2 enrichment of pulmonary protein extracts resulted in an identification of additional 17 phosphoproteins and 20 phosphorylation sites. By use of MOAC, new phosphorylation sites were identified as evidenced for the advanced glycosylation end product-specific receptor. So far this protein was unknown to be phosphorylated in lung tissue of mice. Overall the developed methodology allowed efficient and rapid screening of phosphorylated proteins and can be employed as a general experimental strategy for an identification of phosphoproteins in tissue extracts.  相似文献   

11.
Yan GR  He QY 《Amino acids》2008,35(2):267-274
Reversible protein phosphorylation plays a crucial role in the regulation of signaling pathways that control various biological responses, such as cell growth, differentiation, invasion, metastasis and apoptosis. Proteomics is a powerful research approach for fully monitoring global molecular responses to the activation of signal transduction pathways. Identification of different phosphoproteins and their phosphorylation sites by functional proteomics provides informational insights into signaling pathways triggered by all kinds of factors. This review summarizes how functional proteomics can be used to answer specific questions related to signal transduction systems of interest. By examining our own example on identifying the novel phosphoproteins in signaling pathways activated by EB virus-encoded latent membrane protein 1 (LMP1), we demonstrated a functional proteomic strategy to elucidate the molecular activity of phosphorylated annexin A2 in LMP1 signaling pathway. Functional profiling of signaling pathways is promising for the identification of novel targets for drug discovery and for the understanding of disease pathogenesis.  相似文献   

12.
Although protein phosphorylation is probably the most studied post-translational modification occurring in cells, the number of proteins, which are the target of this modification, is still largely unknown. Increasing the coverage of the phosphoproteome as well as the detection of variation at the phosphorylation level would be very helpful for understanding the mechanisms of cell life and the modifications of the cell state leading to pathological conditions such as neurodegeneration. In order to further investigate variations occurring at the phosphorylation level, we have initiated the creation of a reference map of phosphorylated proteins in rat cortical neurons, employing a combination of phosphatase treatment and 2-DE/differential in gel electrophoresis technology. About 131 spots were recognized as phosphorylated proteins as they showed different migration behaviour after phosphatase treatment. The analysis of 42 selected spots was carried out by LC/MS/MS technology resulting in the identification of two new phosphoproteins.  相似文献   

13.
We report a method for large-scale rapid analysis of phosphoproteins in tissues or cells by combining immobilized metal affinity chromatography (IMAC) with phage display cDNA library screening. We expressed a testis cDNA library as fusion proteins on phage and, using IMAC, enriched for sequences encoding phosphoproteins. Selected clones were polymerase chain reaction amplified and sequenced. The majority of the clones sequenced (80%) encoded known proteins previously identified as phosphoproteins. Immunoblotting with phosphotyrosine antibodies confirmed that some of the selected sequences encoded tyrosine phosphorylated proteins when expressed on phage. An advantage of this method is the rapid identification of phosphoproteins encoded by a cDNA library, which can identify proteins that are potentially phosphorylated in vivo. When this method is combined with limited enzymatic digestion and tandem mass spectrometric techniques, the specific phosphorylation site in a protein can be identified. This technique can be used in proteomics studies to effectively detect phosphorylated proteins and avoid time-consuming and expensive peptide sequencing.  相似文献   

14.
Systematic identification of phosphoproteins is essential for understanding cellular signalling pathways since phosphorylation plays important roles in cellular regulation. Monoclonal antibody MPM-2 recognizes a discrete set of mitosis-specific phosphoproteins and constitutes a specific tool to investigate the significance of phosphorylation in cell cycle. However, due to the difficulties in identifying antigens revealed on immunoblot membrane, only minority of MPM-2 antigens have been identified. Here we originated proteomics approaches for large-scale identification of MPM-2 phosphoproteins. Mitotic extracts were run on several two-dimensional gel electrophoresis (2D) in parallel, and stained by Coomassie Blue. Each individual spot on one of the gels was excised, and proteins in it were further resolved by regular SDS-electrophoresis and blotted on membrane for MPM-2 stain. Counterparts of the positive proteins were selected on another parallel 2D gel and identified by mass-spectrometry. Using this strategy, 100 spots were excised from Coomassie-stained 2D gel and screened by 1D immunoblots for MPM-2 reactivity, and 22 proteins containing potential MPM-2 epitope were identified in addition to a known MPM-2 antigen, laminin-binding protein. These results were further validated by immunofluorescence, co-immunoprecipitation and in vitro phosphorylation assay. The identification of an unprecedented number of potential MPM-2 phosphoprotein antigens gives new insight into the range of proteins involved in the regulation of the early stages of cell division. Meanwhile, this strategy could be used wherever unknown antigens are explored, especially for antibodies that can recognize more than one antigen.  相似文献   

15.
Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane proteins will have wide-ranging implications for research in signal transduction, cell-cell communication, and membrane transport processes.  相似文献   

16.
The phosphorylation of proteins is a central paradigm of signal transduction. The substitution of neutral hydroxyl groups of serine, threonine and tyrosine with a negatively charged phosphate group alters the physicochemical and immunogenic properties of the protein, which then can be used to isolate these isoforms. In the last decades several different techniques were applied, attempting to selectively enrich protein populations with this post-translational modification. This review aims to give an overview on the arsenal of available methods to extract phosphoproteins focusing on chromatographic approaches.  相似文献   

17.
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is generally considered the major regulatory posttranslational modification in eukaryotic cells. Increasing evidence at the genome and proteome level shows that this modification is also present and functional in prokaryotes. We have recently reported the first in-depth phosphorylation site-resolved dataset from the model Gram-positive bacterium, Bacillus subtilis, showing that Ser/Thr/Tyr phosphorylation is also present on many essential bacterial proteins. To test whether this modification is common in Eubacteria, here we use a recently developed proteomics approach based on phosphopeptide enrichment and high accuracy MS to analyze the phosphoproteome of the model Gram-negative bacterium Escherichia coli. We report 81 phosphorylation sites on 79 E. coli proteins, with distribution of Ser/Thr/Tyr phosphorylation sites 68%/23%/9%. Despite their phylogenetic distance, phosphoproteomes of E. coli and B. subtilis show striking similarity in size, classes of phosphorylated proteins, and distribution of Ser/Thr/Tyr phosphorylation sites. By combining the two datasets, we created the largest phosphorylation site-resolved database of bacterial phosphoproteins to date (available at www.phosida.com) and used it to study evolutionary conservation of bacterial phosphoproteins and phosphorylation sites across the phylogenetic tree. We demonstrate that bacterial phosphoproteins and phosphorylated residues are significantly more conserved than their nonphosphorylated counterparts, with a number of potential phosphorylation sites conserved from Archaea to humans. Our results establish Ser/Thr/Tyr phosphorylation as a common posttranslational modification in Eubacteria, present since the onset of cellular life.  相似文献   

18.
Post-translational phosphorylation is a ubiquitous mechanism for modulating protein activity and protein-protein interactions. In this work, we examine how phosphorylation can modulate the conformation of a protein by changing the energy landscape. We present a molecular mechanics method in which we phosphorylate proteins in silico and then predict how the conformation of the protein will change in response to phosphorylation. We apply this method to a test set comprised of proteins with both phosphorylated and non-phosphorylated crystal structures, and demonstrate that it is possible to predict localized phosphorylation-induced conformational changes, or the absence of conformational changes, with near-atomic accuracy in most cases. Examples of proteins used for testing our methods include kinases and prokaryotic response regulators. Through a detailed case study of cyclin-dependent kinase 2, we also illustrate how the computational methods can be used to provide new understanding of how phosphorylation drives conformational change, why substituting Glu or Asp for a phosphorylated amino acid does not always mimic the effects of phosphorylation, and how a phosphatase can “capture” a phosphorylated amino acid. This work illustrates how computational methods can be used to elucidate principles and mechanisms of post-translational phosphorylation, which can ultimately help to bridge the gap between the number of known sites of phosphorylation and the number of structures of phosphorylated proteins.  相似文献   

19.
Protein phosphorylation plays a key role in signal transduction in cells. Since phosphoproteins are present in low abundance, enrichment methods are required for their purification and analysis. Chemical derivatization strategies have been devised for enriching phosphoproteins and phosphopeptides. In this report, we employed a strategy that replaces the phosphate moieties on serine and threonine residues with a biotin-containing tag via a series of chemical reactions. Ribulose 1,5-bis-phosphate carboxylase/oxygenase (RUBISCO)-depleted protein extracts prepared from Arabidopsis seedlings were chemically modified for 'biotin-tagging'. The biotinylated (previously phosphorylated) proteins were then selectively isolated by avidin-biotin affinity chromatography, followed by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). This led to the identification of 31 protein spots, representing 18 different proteins, which are implicated in a variety of cellular processes. Despite its current technical limitations, with further improvements in tools and techniques this strategy may be developed into a useful approach.  相似文献   

20.
A significant consequence of protein phosphorylation is to alter protein-protein interactions, leading to dynamic regulation of the components of protein complexes that direct many core biological processes. Recent proteomic studies have populated databases with extensive compilations of cellular phosphoproteins and phosphorylation sites and a similarly deep coverage of the subunit compositions and interactions in multiprotein complexes. However, considerably less data are available on the dynamics of phosphorylation, composition of multiprotein complexes or that define their interdependence. We describe a method to identify candidate phosphoprotein complexes by combining phosphoprotein affinity chromatography, separation by size, denaturing gel electrophoresis, protein identification by tandem mass spectrometry, and informatics analysis. Toward developing phosphoproteome profiling, we have isolated native phosphoproteins using a phosphoprotein affinity matrix, Pro-Q Diamond resin (Molecular Probes-Invitrogen). This resin quantitatively retains phosphoproteins and associated proteins from cell extracts. Pro-Q Diamond purification of a yeast whole cell extract followed by 1-D PAGE separation, proteolysis and ESI LC-MS/MS, a method we term PA-GeLC-MS/MS, yielded 108 proteins, a majority of which were known phosphoproteins. To identify proteins that were purified as parts of phosphoprotein complexes, the Pro-Q eluate was separated into two fractions by size, <100 kDa and >100 kDa, before analysis by PAGE and ESI LC-MS/MS and the component proteins queried against databases to identify protein-protein interactions. The <100 kDa fraction was enriched in phosphoproteins indicating the presence of monomeric phosphoproteins. The >100 kDa fraction contained 171 proteins of 20-80 kDa, nearly all of which participate in known protein-protein interactions. Of these 171, few are known phosphoproteins, consistent with their purification by participation in protein complexes. By comparing the results of our phosphoprotein profiling with the informational databases on phosphoproteomics, protein-protein interactions and protein complexes, we have developed an approach to examining the correlation between protein interactions and protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号