首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In order to target the major groove of DNA, we have designed novel peptide derivatives of 7-H pyridocarbazole, which is the chromophoric ring of ditercalinium, a potent antitumor bisin- tercalator. We will present here the results obtained with a compound that has a D-Asn tethered to the pyridinium nitrogen of the ring by a protonated β-alanyl-ethyl chain. We have investigated two alternative means of intercalation of the chromophore: first, into the (pur-pur) sequences, d(CpG)2 and d(CpA)·d(TpG); second, into the (pur-pyr) sequences, d(GpC)2and d(GpT)·d(ApC). For the first intercalative mode, the best bound triplet sequences are d(ACG)·d(CGT) and d(ACA) d(TGT), namely with an adenine immediately upstream from the intercalation site. In these complexes, the chromophore has its concave side in the major groove, its long axis nearly colinear with the mean long axis of the two base pairs of the intercalation site, and a bidentate H-bonded configuration occurs which involves the C=0 and NH groups of the D-Asn side chain and HN6 and N7 (resp.) of the adenine base upstream. One alkylammonium proton is H-bonded to N7 of the guanine of the intercalation site, on the strand opposite to the one bearing the adenine. In the second intercalative mode, the chromophore's concave site now faces one DNA strand, and both alkylammonium protons are involved in H-bonds with N7 and O6 of the 3′ guanine on the same strand. The peptide's complexes with sequences having A, G, or C upstream of this guanine were computed to be energetically competitive with those with the best (pyr-pur) triplets. This provides a rare example of energetically favourable drug intercalation in-between (pur-pyr) sequences as compared to the standard (pyr-pur) ones. The synthesis of this compound was performed, and a series of footprinting experiments undertaken on a total of approximately 300 nucleotides. These experiments were consistent with the inferences from the theoretical computations.  相似文献   

2.
Specific interactions between transmembrane proteins and sphingolipids is a poorly understood phenomenon, and only a couple of instances have been identified. The best characterized example is the sphingolipid-binding motif VXXTLXXIY found in the transmembrane helix of the vesicular transport protein p24. Here, we have used a simple motif-probability algorithm (MOPRO) to identify proteins that contain putative sphingolipid-binding motifs in a dataset comprising proteomes from mammalian organisms. From these motif-containing candidate proteins, four with different numbers of transmembrane helices were selected for experimental study: i) major histocompatibility complex II Q alpha chain subtype (DQA1), ii) GPI-attachment protein 1 (GAA1), iii) tetraspanin-7 TSN7, and iv), metabotropic glutamate receptor 2 (GRM2). These candidates were subjected to photo-affinity labeling using radiolabeled sphingolipids, confirming all four candidate proteins as sphingolipid-binding proteins. The sphingolipid-binding motifs are enriched in the 7TM family of G-protein coupled receptors, predominantly in transmembrane helix 6. The ability of the motif-containing candidate proteins to bind sphingolipids with high specificity opens new perspectives on their respective regulation and function.  相似文献   

3.
4.
基于小波分析的膜蛋白跨膜区段序列分析和预测   总被引:2,自引:0,他引:2  
膜蛋白是一类结构独特的蛋白质,在各种细胞中普遍存在,发挥着重要的生理功能。目前仅有少数膜蛋白听结构被实验测出,因此用计算机预测膜蛋白的结构是蛋白质结构预测的主要研究内容之一。膜蛋白一般在膜上形成保守的跨膜螺旋结构,序列特征明显,比较适合用预测的方法确定跨膜螺旋区段的位置。国际上已有一些研究者用人工神经网络方法、多序列比对方法和统计方法进行了预测尝试,取得了一定的成功经验。我们对蛋白质序列数据库中的  相似文献   

5.
Caveolin-1 has a segment of hydrophobic amino acids comprising approximately residues 103–122. We have performed an in silico analysis of the conformational preference of this segment of caveolin-1 using PepLook. We find that there is one main group of stable conformations corresponding to a hydrophobic U bent model that would not traverse the membrane. Furthermore, the calculations predict that substituting the Pro110 residue with an Ala will change the conformation to a straight hydrophobic helix that would traverse the membrane. We have expressed the P110A mutant of caveolin-1, with a FLAG tag at the N terminus, in HEK 293 cells. We evaluate the topology of the proteins with confocal immunofluorescence microscopy in these cells. We find that FLAG tag at the N terminus of the wild type caveolin-1 is not reactive with antibodies unless the cell membrane is permeabilized with detergent. This indicates that in these cells, the hydrophobic segment of this protein is not transmembrane but takes up a bent conformation, making the protein monotopic. In contrast, the FLAG tag at the N terminus of the P110A mutant is equally exposed to antibodies, before and after membrane permeabilization. We also find that the P110A mutation causes a large reduction of endocytosis of caveolae, cellular lipid accumulation, and lipid droplet formulation. In addition, we find that this mutation markedly reduces the ability of caveolin-1 to form structures with the characteristic morphology of caveolae or to partition into the detergent-resistant membranes of these cells. Thus, the single Pro residue in the membrane-inserting segment of caveolin-1 plays an important role in both the membrane topology and localization of the protein as well as its functions.  相似文献   

6.
The membrane-associated folding/unfolding of pH (low) insertion peptide (pHLIP) provides an opportunity to study how sequence variations influence the kinetics and pathway of peptide insertion into bilayers. Here, we present the results of steady-state and kinetics investigations of several pHLIP variants with different numbers of charged residues, with attached polar cargoes at the peptide's membrane-inserting end, and with three single-Trp variants placed at the beginning, middle, and end of the transmembrane helix. Each pHLIP variant exhibits a pH-dependent interaction with a lipid bilayer. Although the number of protonatable residues at the inserting end does not affect the ultimate formation of helical structure across a membrane, it correlates with the time for peptide insertion, the number of intermediate states on the folding pathway, and the rates of unfolding and exit. The presence of polar cargoes at the peptide's inserting end leads to the appearance of intermediate states on the insertion pathway. Cargo polarity correlates with a decrease of the insertion rate. We conclude that the existence of intermediate states on the folding and unfolding pathways is not mandatory and, in the simple case of a polypeptide with a noncharged and nonpolar inserting end, the folding and unfolding appears as an all-or-none transition. We propose a model for membrane-associated insertion/folding and exit/unfolding and discuss the importance of these observations for the design of new delivery agents for direct translocation of polar therapeutic and diagnostic cargo molecules across cellular membranes.  相似文献   

7.
Klenner C  Yuan J  Dalbey RE  Kuhn A 《FEBS letters》2008,582(29):3967-3972
The coat protein of bacteriophage Pf3 is inserted into the plasma membrane of Escherichia coli by the insertase YidC. To identify which of the six transmembrane regions of YidC bind the single-spanning Pf3 coat protein during membrane protein biogenesis, we used the disulfide cross-linking approach. We generated single cysteines in each of the transmembrane regions of YidC and in the center of the hydrophobic region of Pf3 coat protein. We found that the substrate Pf3 coat contacts the first and third transmembrane segment (TM) of YidC as crosslinks between these two proteins can be formed in vivo during membrane biogenesis. A detailed disulfide-mapping study revealed that one face of TM3 of YidC makes contact with the Pf3 protein.

Structured summary

MINT-6795850, MINT-6795869, MINT-6795912, MINT-6795927, MINT-6795942:
Coat protein (uniprotkb:P03623) binds (MI:0408) YidC (uniprotkb:P25714) by cross-linking studies (MI:0030)
MINT-6795898:
Coat protein (uniprotkb:P03623) binds (MI:0408) Coat protein (uniprotkb:P03623) by cross-linking studies (MI:0030)
  相似文献   

8.
The membrane may play a role in the pathogenesis of the prion protein (PrP). Cytoplasmic expression of PrP causes the conversion of PrP to a self-perpetuating PrPSc-like conformation and the interaction of polypeptide chain with the hydrophobic core of the membrane is believed to be closely correlated with neurodegeneration. However, it is still elusive what factors govern the membrane interaction of PrP. Here, we show that PrP penetrates deeply into the membrane when the single disulfide bond is reduced, which results in membrane disruption and leakage. The proteinase K treatment and the fluorescence quenching assays showed that a predicted transmembrane domain of PrP penetrates into the membrane when the disulfide bond was reduced. Therefore, the oxidation state of PrP might be an important factor that influences its neurotoxicity or pathogenesis.  相似文献   

9.
The tetracycline resistance proteins (TetA) of gram-negative bacteria are secondary active transport proteins that contain buried charged amino acids that are important for tetracycline transport. Earlier studies have shown that insertion of TetA proteins into the cytoplasmic membrane is mediated by helical hairpin pairs of transmembrane (TM) segments. However, whether helical hairpins direct spontaneous insertion of TetA or are required instead for its interaction with the cellular secretion (Sec) machinery is unknown. To gain insight into how TetA proteins are inserted into the membrane, we have investigated how tolerant the class C TetA protein encoded by plasmid pBR322 is to placement of charged residues in TM segments. The results show that the great majority of charge substitutions do not interfere with insertion even when placed at locations that cannot be shielded internally within helical hairpins. The only mutations that frequently block insertion are proline substitutions, which may interfere with helical hairpin folding. The ability of TetA to broadly tolerate charge substitutions indicates that the Sec machinery assists in its insertion into the membrane. The results also demonstrate that it is feasible to engineer charged residues into the interior of TetA proteins for the purpose of structure-function analysis.  相似文献   

10.
Tang J  Gai F 《Biochemistry》2008,47(32):8250-8252
When it is bound to lipid bilayers, the conformation and location of the membrane pH (low) insertion peptide (pHLIP) depend on pH. This unique feature allows us to explicitly measure the kinetics leading to different membrane-bound states of pHLIP using a model membrane and stopped-flow technique. Our results show that the membrane association kinetics of pHLIP are multiexponential and are consistent with a parallel membrane interaction mechanism. Interestingly, our results also show that the overall rate at which the membrane-inserted state is formed is almost identical to that of formation of the surface-bound state, while prebinding slows the rate of peptide insertion.  相似文献   

11.
The physical mechanisms that govern the folding and assembly of integral membrane proteins are poorly understood. It appears that certain properties of the lipid bilayer affect membrane protein folding in vitro, either by modulating helix insertion or packing. In order to begin to understand the origin of this effect, we investigate the effect of lipid forces on the insertion of a transmembrane alpha-helix using a water-soluble, alanine-based peptide, KKAAAIAAAAAIAAWAAIAAAKKKK-amide. This peptide binds to preformed 1,2-dioleoyl-l-alpha-phosphatidylcholine (DOPC) vesicles at neutral pH, but spontaneous transmembrane helix insertion directly from the aqueous phase only occurs at high pH when the Lys residues are de-protonated. These results suggest that the translocation of charge is a major determinant of the activation energy for insertion. Time-resolved measurements of the insertion process at high pH indicate biphasic kinetics with time constants of ca 30 and 430 seconds. The slower phase seems to correlate with formation of a predominantly transmembrane alpha-helical conformation, as determined from the transfer of the tryptophan residue to the hydrocarbon region of the membrane. Temperature-dependent measurements showed that insertion can proceed only above a certain threshold temperature and that the Arrhenius activation energy is of the order of 90 kJ mol(-1). The kinetics, threshold temperature and the activation energy change with the mole fraction of 1,2-dioleoyl-l-alpha-phosphatidylethanolamine (DOPE) introduced into the DOPC membrane. The activation energy increases with increasing DOPE content, which could reflect the fact that this lipid drives the bilayer towards a non-bilayer transition and increases the lateral pressure in the lipid chain region. This suggests that folding events involving the insertion of helical segments across the bilayer can be controlled by lipid forces.  相似文献   

12.
Accurate quantitative estimates of protein-membrane interactions are critical to studies of membrane proteins. Here, we demonstrate that thermodynamic analyses based on current hydropathy scales do not account for the significant and experimentally determined effects that Ca2+ or Mg2+ have on protein-membrane interactions. We examined distinct modes of interaction (interfacial partitioning and folding and transmembrane insertion) by studying three highly divergent peptides: Bid-BH3 (derived from apoptotic regulator Bid), peripherin-2-derived prph2-CTER, and the cancer-targeting pH-Low-Insertion-Peptide (pHLIP). Fluorescence experiments demonstrate that adding 1–2 mM of divalent cations led to a substantially more favorable bilayer partitioning and insertion, with free energy differences of 5–15 kcal/mol.  相似文献   

13.
Many plasma membrane proteins are anchored to the membrane via a C-terminal glycosylphosphatidylinositol (GPI) moiety. The GPI anchor is attached to the protein in the endoplasmic reticulum by transamidation, a reaction in which a C-terminal GPI-attachment signal is cleaved off concomitantly with addition of the GPI moiety. GPI-attachment signals are poorly conserved on the sequence level but are all composed of a polar segment that includes the GPI-attachment site followed by a hydrophobic segment located at the very C terminus of the protein. Here, we show that efficient GPI modification requires that the hydrophobicity of the C-terminal segment is "marginal": less hydrophobic than type II transmembrane anchors and more hydrophobic than the most hydrophobic segments found in secreted proteins. We further show that the GPI-attachment signal can be modified by the transamidase irrespective of whether it is first released into the lumen of the endoplasmic reticulum or is retained in the endoplasmic reticulum membrane.  相似文献   

14.
15.
This review focuses on the methods that are available to study transmembrane (TM) helix dimerization in membrane-like environments (either bacterial membranes or lipid bilayers, as mimics of the eukaryotic cellular membrane), with an emphasis on the utility of surface-supported bilayers in such studies.  相似文献   

16.
The backbone dynamic properties of uniformly (15)N-labeled calcium-saturated calmodulin (Ca(2+)-CaM) in 35% 2,2,2-trifluoroethanol (TFE) have been examined by (15)N NMR relaxation methods. This particular solvent was chosen in order to mimic the conditions in which CaM was crystallized, which included the presence of alcohols. Special attention was paid to the central linker region of Ca(2+)-CaM, which is a long, solvent-exposed alpha-helix in the crystal structure but is known to be partially unwound and flexible in solution. (15)N T(1), T(2), and (15)N-[(1)H] NOE values were determined for both Ca(2+)-CaM in H(2)O and Ca(2+)-CaM in 35% TFE, and the results indicated that the presence of 35% TFE did indeed induce a more ordered conformation in the central linker, with order parameters for Asp78-Glu80 of 0.29, 0.17, and 0.27 in H(2)O and 0.82, 0.66, and 0.64 in 35% TFE. However, (15)N-[(1)H] NOE values showed that these residues were still slightly more flexible than the rest of the molecule in 35% TFE (Asp78-Glu80 (15)N-[(1)H] NOE=0.46, 0.46, and 0.51). Furthermore, there is still independent motion of the two lobes of Ca(2+)-CaM in 35% TFE, with motional correlation times of approximately 10 and approximately 9 ns for the N- and C-lobes, respectively, indicating that 35% TFE was not sufficient to force Ca(2+)-CaM into a rigid dumbbell-shaped molecule as seen in the crystal structure. Additional factors that could further stabilize the structure of CaM in the crystal include pH, temperature, and crystal packing.  相似文献   

17.
A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge the hydrophobic surface within the lipid bilayer to satisfy the hydrophobic effect if the helix length exceeds the bilayer width. The hydrophobic surface of transmembrane helix 1 (TM1) of lactose permease, LacY, is accessible to the bilayer, and too long to be accommodated in the hydrophobic portion of a typical lipid bilayer if oriented perpendicular to the membrane surface. Hence, nuclear magnetic resonance (NMR) data and molecular dynamics simulations show that TM1 from LacY may flex as well as tilt to satisfy the hydrophobic mismatch with the bilayer. In an analogous study of the hydrophobic mismatch of TM7 of bovine rhodopsin, similar flexing of the transmembrane segment near the conserved NPxxY sequence is observed. As a control, NMR data on TM5 of lacY, which is much shorter than TM1, show that TM5 is likely to tilt, but not flex, consistent with the close match between the extent of hydrophobic surface of the peptide and the hydrophobic thickness of the bilayer. These data suggest mechanisms by which the lipid bilayer in which the protein is embedded modulates conformation, and thus function, of integral membrane proteins through interactions with the hydrophobic transmembrane helices.  相似文献   

18.
19.
Abstract

Needle insertion plays an important part in the process of corneal graft surgery. In this paper, a three-dimensional symmetry model of the human cornea is constructed using the finite element method. Simplification of specific optic physiology is defined for the model: The cornea constrained by the sclera is presented as two layers consisting of epithelium and stroma. A failure criterion based on the distortion energy theory has been proposed to predict the insertion process of the needle. The simulation results show a good agreement with the experimental data reported in the literature. The influence of needling conditions (e.g. insertion velocity, rotation parameters and vibration parameters) on the insertion force are then discussed. In addition, a multi-objective optimization based on particle swarm optimization (PSO) is applied to reduce the insertion force. The numerical results provide guidelines for selecting the motion parameters of the needle and a potential basis for further developments in robot-assisted surgery.  相似文献   

20.
Colicins are toxic proteins produced by Escherichia coli that must cross the membrane to exert their activity. The lipid insertion of their pf domain is linked to a conformational change which enables the penetration of a hydrophobic hairpin. They provide useful models to more generally study insertion of proteins, channel formation and protein translocation in and across membranes. In this paper, we study the lipid-destabilizing properties of helices H8 and H9 forming the hydrophobic hairpin of colicin E1. Modelling analysis suggests that those fragments behave like tilted peptides. The latter are characterized by an asymmetric distribution of their hydrophobic residues when helical. They are able to interact with a hydrophobic/hydrophilic interface (such as a lipid membrane) and to destabilize the organized system into which they insert. Fluorescence techniques using labelled liposomes clearly show that H9, and H8 to a lesser extent, destabilize lipid particles, by inducing fusion and leakage. AFM assays clearly indicate that H8 and especially H9 induce membrane fragilization. Holes in the membrane are even observed in the presence of H9. This behaviour is close to what is seen with viral fusion peptides. Those results suggest that the peptides could be involved in the toroidal pore formation of colicin E1, notably by disturbing the lipids and facilitating the insertion of the other, more hydrophilic, helices that will form the pore. Since tilted, lipid-destabilizing fragments are also common to membrane proteins and to signal sequences, we suggest that tilted peptides should have an ubiquitous role in the mechanism of insertion of proteins into membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号