首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Three compounds of the pulmonary surfactant – dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and the surfactant associated protein C (SP-C) – were spread at the air-water interface of a Langmuir trough as a model system to mimic the properties of natural surfactant. Fluorescence microscopical images of the film formed at the interface were obtained during compression using a fluorescence dye bound covalently either to phosphatidylcholine or to SP-C. The images were quantified using statistical methods in respect to relative areas and relative fluorescence intensities of the domains found. In the early stage of compression, film pressure rose slightly and was accompanied by a phase separation which could be recognized in the images by the formation of bright and dark domains. On further compression, after a steep increase of film pressure, a plateau region of constant film pressure started abruptly. During compression in the plateau region, fluorescence intensity of the bright domain formed in the early stage of compression increased. The increasing fluorescence intensity, the non-Gaussian intensity distribution of the bright domain, and the small mean molecular area of the film in the plateau region gave rise to the assumption that multilayer structures were formed in the late stage of compression. The formation of the multilayer structures was fully reversible in repeated compression-expansion cycles including the plateau region of the phase diagram. The ability of lipid/SP-C mixtures to form reversible multilayer structures during compression may be relevant to stability in lungs during expiration and inhalation. Received: 13 February 1997 / Accepted: 22 May 1997  相似文献   

2.
Raman spectroscopy was used to determine the conformation of the disulfide linkage between cysteine residues in the homodimeric construct of the N-terminal alpha helical domain of surfactant protein B (dSP-B1-25). The conformation of the disulfide bond between cysteine residues in position 8 of the homodimer of dSP-B1-25 was compared with that of a truncated homodimer (dSP-B8-25) of the peptide having a disulfide linkage at the same position in the alpha helix. Temperature-dependent Raman spectra of the S-S stretching region centered at ∼ 500 cm− 1 indicated a stable, although highly strained disulfide conformation with a χ(CS-SC) dihedral angle of ± 10° for the dSP-B1-25 dimer. In contrast, the truncated dimer dSP-B8-25 exhibited a series of disulfide conformations with the χ(CS-SC) dihedral angle taking on values of either ± 30° or 85± 20°. For conformations with χ(CS-SC) close to the ± 90° value, the Raman spectra of the 8-25 truncated dimers exhibited χ(SS-CC) dihedral angles of 90/180° and 20-30°. In the presence of a lipid mixture, both constructs showed a ν(S-S) band at ∼ 488 cm− 1, corresponding to a χ(CS-SC) dihedral angle of ± 10°. Polarized infrared spectroscopy was also used to determine the orientation of the helix and β-sheet portion of both synthetic peptides. These calculations indicated that the helix was oriented primarily in the plane of the surface, at an angle of ∼ 60-70° to the surface normal, while the β structure had ∼ 40° tilt. This orientation direction did not change in the presence of a lipid mixture or with temperature. These observations suggest that: (i) the conformational flexibility of the disulfide linkage is dependent on the amino acid residues that flank the cysteine disulfide bond, and (ii) in both constructs, the presence of a lipid matrix locks the disulfide bond into a preferred conformation.  相似文献   

3.
Addition of ionic and nonionic polymers can improve the function of therapeutic surfactants in vitro and in vivo, especially under conditions that tend to inhibit surfactant activity. Since surfactant proteins also act to reduce surfactant inhibition, we studied the relative effects of a synthetic peptide (that mimics some of the properties of a surfactant protein), polymers, and their combination on function of surfactant phospholipid activity in vitro. We evaluated surface activity after adding polymers—polyethylene glycol or hyaluronan—to a lipid mixture with or without the synthetic peptide, sinapultide (KL4). Using a pulsating bubble surfactometer, we measured peptide/polymer effects separately or combined at two peptide concentrations. Phospholipid mixtures, with or without KL4 or polymers, all demonstrated good surface activity. With serum present as an inhibiting agent, adding either concentration of KL4 reduced inhibition. Mixtures containing the higher concentration of KL4 required higher concentrations of serum for inhibition to occur. Adding either polymer to mixtures with KL4 further decreased susceptibility to inhibition (required higher serum concentrations). In the presence of serum, high molecular weight hyaluronan with KL4 at 0.4 mg/ml improved surface activity to a greater degree than 0.8 mg/ml KL4 without polymer. If the beneficial effects of adding polymer to KL4-lipid mixtures are also borne out in the treatment of experimental lung injury, these peptide-polymer surfactant combinations may eventually prove useful in the treatment of some forms of acute lung injury in humans.  相似文献   

4.
Lung surfactant protein B (SP-B) is a lipophilic protein critical to lung function at ambient pressure. KL4 is a 21-residue peptide which has successfully replaced SP-B in clinical trials of synthetic lung surfactants. CD and FTIR measurements indicate KL4 is helical in a lipid bilayer environment, but its exact secondary structure and orientation within the bilayer remain controversial. To investigate the partitioning and dynamics of KL4 in phospholipid bilayers, we introduced CD3-enriched leucines at four positions along the peptide to serve as probes of side chain dynamics via 2H solid-state NMR. The chosen labels allow distinction between models of helical secondary structure as well as between a transmembrane orientation or partitioning in the plane of the lipid leaflets. Leucine side chains are also sensitive to helix packing interactions in peptides that oligomerize. The partitioning and orientation of KL4 in DPPC/POPG and POPC/POPG phospholipid bilayers, as inferred from the leucine side chain dynamics, is consistent with monomeric KL4 lying in the plane of the bilayers and adopting an unusual helical structure which confers amphipathicity and allows partitioning into the lipid hydrophobic interior. At physiologic temperatures, the partitioning depth and dynamics of the peptide are dependent on the degree of saturation present in the lipids. The deeper partitioning of KL4 relative to antimicrobial amphipathic α-helices leads to negative membrane curvature strain as evidenced by the formation of hexagonal phase structures in a POPE/POPG phospholipid mixture on addition of KL4. The unusual secondary structure of KL4 and its ability to differentially partition into lipid lamellae containing varying levels of saturation suggest a mechanism for its role in restoring lung compliance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号