首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interferon γ (IFN-γ), a multifunctional cytokine, was upregulated in the resected gastric cancer tissue. However, whether IFN-γ is involved in the regulation of gastric cancer has not been well elucidated. Herein, we aimed to investigate the effects and mechanism of IFN-γ on gastric cancer. In this study, we found a vital role of IFN-γ in enhancing proliferation, inhibiting apoptosis, and promoting cell migration and invasion in gastric cancer cells SGC-7901 and MGC-803. Additionally, IFN-γ activated nuclear factor κB (NF-κB) signaling pathway by upregulating the phosphorylation expression of p65 and IκBα, and induced the expression of integrin β3 in vitro. Therefore, to further investigate the relationship between IFN-γ and integrin β3, SGC-7901 cells were transfected with integrin β3 siRNA. And then cells expressed lower cell viability, migration, and invasion rates, while cell apoptosis was significantly enhanced. Meanwhile, expression of integrin β3, MMP-2, MMP-9, and NF-κB, including p65 and IκBα, and the nuclear translocation of NF-κB/p65 were dramatically repressed, whereas IFN-γ significantly improved the effects. Moreover, in vivo, the experiment of xenograft model and pulmonary metastasis model also retarded in integrin β3 siRNA group. And the expression of integrin β3, MMP-2, MMP-9, and NF-κB was repressed. However, the treatment with IFN-γ improved tumor volume, lung/total weight, tumor nodules, and the protein expression described above compared with integrin β3 siRNA group. Overall, the results indicated that IFN-γ induces gastric cancer cell proliferation and metastasis partially through the upregulation of integrin β3-mediated NF-κB signaling. Hence, the inhibition of IFN-γ or integrin β3 may be the key for the treatment of gastric cancer.  相似文献   

2.
Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-κB is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-κB activation. Here, we show that the alternative pathway is constitutively activated and NF-κB-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.  相似文献   

3.
Ligation of the lymphotoxin-β receptor (LTβR) by LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (TNFSF14)) activates the noncanonical (NC) NF-κB (nuclear factor-κB) pathway and up-regulates CXCL12 gene expression by human umbilical vein endothelial cells (HUVEC). In contrast, TNF only activates classical NF-κB signaling and does not up-regulate CXCL12. To determine whether cross-talk between the classical and NC pathways affects CXCL12 expression, we investigated the effects of TNF on LIGHT signaling in HUVEC. We show here that TNF inhibits both basal and LIGHT-induced CXCL12 expression. Negative regulation by TNF requires the classical NF-κB pathway as inhibition of basal and induced CXCL12 was reversed in HUVEC-expressing dominant negative IκB (inhibitor of NF-κB) kinase (IKK)β (IKKβ(K44M)). TNF did not inhibit the NC NF-κB pathway activation as LIGHT-induced p100 processing to p52 was intact; however, TNF either alone or together with LIGHT up-regulated p100 and RelB expression and induced the nuclear localization of p100-RelB complexes. Enhanced p100 and RelB expression was inhibited by IKKβ(K44M), which led us to question whether the IκB function of elevated p100 mediates the inhibition of CXCL12 expression by TNF. We retrovirally transduced HUVEC to express p100 at a level similar to that up-regulated by TNF; however, basal and LIGHT-induced CXCL12 expression was normal in the transduced cells. In contrast, ectopic RelB expression recapitulated the effects of TNF on NC signaling and inhibited basal and LIGHT-induced CXCL12 expression by HUVEC. Our findings therefore demonstrate that TNF-induced classical NF-κB signaling up-regulates RelB expression that inhibits both basal and NC NF-κB-dependent CXCL12 expression.  相似文献   

4.
5.
6.
The NFκB family is composed by five subunits (p65/RelA, c-Rel, RelB, p105-p50/NFκB1, p100-p52/NF-κB2) and controls the expression of many genes that participate in cell cycle, apoptosis, and other key cellular processes. In a canonical pathway, NF-κB activation depends on the IKK complex activity, which is formed by three subunits (IKKα and IKKβ and IKKγ/NEMO). There is an alternative NFκB activation pathway that does not require IKKβ or IKKγ/NEMO, in which RelB is a major player. We report in a panel of human breast cancer cells that the IKK/NFκB system is generally overexpressed in breast cancer cells and there is heterogeneity in expression levels of individual members between different cell lines. Doxorubicin, an anticancer agent used in patients with breast cancer, activated NFκB and appeared to be less effective in cells expressing predominantly members of the canonical IKK/NFκB. Two NFκB inhibitors, bortezomib and NEMO-Binding Domain Inhibitory Peptide, prevented doxorubicin-induced NFκB activation and increased doxorubicin antitumor effects in BT-474 cells. Transient downregulation of members of the canonical pathway (p65, p52, c-Rel and IKKγ/NEMO) by siRNA in HeLa cells increased doxorubicin cytotoxicity. In contrast, silencing of RelB, a key subunit of the alternative pathway, had no evident effects on doxorubicin cytotoxicity. To conclude, NFκB inhibition sensitized cells to doxorubicin, implying directly p65, p52, c-Rel and IKKγ/NEMO subunits in chemoresistance, but not RelB. These findings suggest that selective inhibition of the canonical NFκB pathway is sufficient to improve doxorubicin antitumor effects.  相似文献   

7.
CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p=0.0383), lymph node metastasis (p=0.0091) and Ki67 proliferation index (p=0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.  相似文献   

8.
Sun SC 《Cell research》2011,21(1):71-85
The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.  相似文献   

9.
10.
11.
Oral squamous cell carcinoma (OSCC) is a usual oral cancer. Therefore, it's essential to identify targets for its early diagnosis and therapy. This research aimed to explore the roles of human β-defensin-3 (hBD-3) and nuclear factor-kappa B (NF-κB) p65 in the pathogenesis and progression of OSCC. The connection between NF-κB p65 and the carcinogenesis of oral cancer was analyzed by immunohistochemical staining. The relative expressions of hBD-3 and NF-κB p65 in OSCC cells were evaluated by qRT-PCR and Western blot. Afterward, hBD-3 was knocked down, and NF-κB p65 was overexpressed. The cell viability and invasion were tested via CCK-8 and Transwell experiment, and the expression of hBD-3, NF-κB p65, and its downstream molecules was evaluated by Western blot. The expression of NF-κB p65 was increased with the aggravation of the oral submucosal fibrosis. HBD-3 and NF-κB p65 were high-expressed in OSCC cells. The viability and invasion abilities of OSCC cells that knocked down hBD-3 were markedly decreased, while they were restored by the overexpression of NF-κB p65. The expressions of NF-κB p65 and c-myc were diminished while IκB and p21 were raised with the knockdown of hBD-3. After overexpression of NF-κB p65, the expression of hBD-3 and IκB did not change markedly, while c-myc was increased and p21 was decreased dramatically. HBD-3 and NF-κB p65 facilitate the proliferation and invasion of OSCC cells, and hBD-3 may promote this process by governing the expression of NF-κB p65 and its downstream c-myc and p21.  相似文献   

12.
We previously demonstrated that indoxyl sulfate induces senescence and dysfunction of proximal tubular cells by activating p53 expression. However, little is known about the role of nuclear factor (NF)-κB in these processes. The present study examines whether activation (phosphorylation) of NF-κB by indoxyl sulfate promotes senescence and dysfunction in human proximal tubular cells (HK-2 cells). Indoxyl sulfate induced phosphorylation of NF-κB p65 on Ser-276, which was suppressed by N-acetylcysteine, an antioxidant. Furthermore, indoxyl sulfate induced NF-κB p65 expression. Inhibitors of NF-κB (pyrrolidine dithiocarbamate and isohelenin) and NF-κB p65 small interfering RNA (siRNA) suppressed indoxyl sulfate-induced senescence-associated β-galactosidase activity and expression of p53, transforming growth factor (TGF)-β1, and α-smoothe muscle actin (SMA). The induction of p53 expression and p53 promoter activity by indoxyl sulfate were inhibited by pifithrin-α, p-nitro, an inhibitor of p53, whereas p53-transfected cells showed enhanced p53 promoter activity. NF-κB inhibitors suppressed indoxyl sulfate-induced p21 expression, whereas NF-κB p65 siRNA enhanced its expression. NF-κB inhibitors partially alleviated indoxyl sulfate-induced inhibition of cellular proliferation. NF-κB p65 siRNA-transfected cells showed less proliferation in the presence of indoxyl sulfate than control cells. Phosphorylated NF-κB p65 was expressed and colocalized with p53, p21, β-galactosidase, TGF-β1, and α-SMA in the kidneys of chronic renal failure (CRF) rats. AST-120, which reduces serum indoxyl sulfate level, suppressed their expression in the CRF rat kidneys. Taken together, NF-κB plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. More notably, indoxyl sulfate accelerates proximal tubular cell senescence with progression of CRF through reactive oxygen species-NF-κB-p53 pathway.  相似文献   

13.
14.
S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/ A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogenactivated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPKdependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer.  相似文献   

15.
16.
17.
NF-κB activation is essential for receptor activator for NF-κB ligand (RANKL)-induced osteoclast formation. IL-4 is known to inhibit the RANKL-induced osteoclast differentiation while at the same time promoting macrophage fusion to form multinucleated giant cells (MNG). Several groups have proposed that IL-4 inhibition of osteoclastogenesis is mediated by suppressing the RANKL-induced activation of NF-κB. However, we found that IL-4 did not block proximal, canonical NF-κB signaling. Instead, we found that IL-4 inhibited alternative NF-κB signaling and induced p105/50 expression. Interestingly, in nfκb1(-/-) bone marrow-derived macrophages (BMM), the formation of both multinucleated osteoclast and MNG induced by RANKL or IL-4, respectively, was impaired. This suggests that NF-κB signaling also plays an important role in IL-4-induced macrophage fusion. Indeed, we found that the RANKL-induced and IL-4-induced macrophage fusion were both inhibited by the NF-κB inhibitors IκB kinase 2 inhibitor and NF-κB essential modulator inhibitory peptide. Furthermore, overexpression of p50, p65, p52, and RelB individually in nfκb1(-/-) or nfκb1(+/+) BMM enhanced both giant osteoclast and MNG formation. Interestingly, knockdown of nfκb2 in wild-type BMM dramatically enhanced both osteoclast and MNG formation. In addition, both RANKL- and IL-4-induced macrophage fusion were impaired in NF-κB-inducing kinase(-/-) BMM. These results suggest IL-4 influences NF-κB pathways by increasing p105/p50 and suppressing RANKL-induced p52 translocation and that NF-κB pathways participate in both RANKL- and IL-4-induced giant cell formation.  相似文献   

18.
We aimed to investigate the potential role and regulatory mechanism of long noncoding RNA tumor-associated lncRNA expressed in chromosome 2 (TALNEC2) in breast cancer. The expression of TALNEC2 in breast cancer tissues and cells were investigated. MCF-7 and MDA-MB-231 cells were transfected with small interfering RNA (siRNA) duplexes for targeting TALNEC2 (si-TALNEC2), enhancer of zeste homolog 2 (EZH2; si-EZH2) and p57KIP2 (si-p57 KIP2), and their corresponding controls (si-NC). The viability, colony forming ability, cell cycle, apoptosis, and autophagy of transfected cells were assessed. The expressions of p-p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathway-related proteins were investigated. The results showed that TALNEC2 was highly expressed in breast cancer tissues and cells. Knockdown of TALNEC2 significantly inhibited the malignant behaviors of MCF-7 and MDA-MB-231 cells, including inhibiting cell viability and colony forming, arresting cell cycle at G0/G1 phase, inducing cell apoptosis, and promoting cell autophagy. EZH2 was a TALNEC2 binding protein, which was upregulated in breast cancer tissues and cells and could negatively regulate p57 KIP2. Effects of TALNEC2 knockdown on malignant behaviors of MCF-7 cells were reversed by p57 KIP2 knockdown. The expressions of p-p38, RelA, and RelB in MCF-7 cells were decreased after knockdown of TALNEC2 or EZH2, which were reversed by knockdown of p57 KIP2 concurrently. In conclusion, TALNEC2 may play an oncogenic role in breast cancer by binding to EZH2 to target p57 KIP2. Activation of p-p38 MAPK and NF-κB pathways may be key mechanisms mediating the oncogenic role of TALNEC2 in breast cancer. TALNEC2 may serve as a promising target in the therapy of breast cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号