首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remote measurements of body temperature (Tb) in animals require implantation of relatively large temperature-sensitive radio-transmitters or data loggers, whereas rectal temperature (Trec) measurements require handling and therefore may bias the results. We investigated whether ∼0.1 g temperature-sensitive subcutaneously implanted transponders can be reliably used to quantify thermal biology and torpor use in small mammals. We examined (i) the precision of transponder readings as a function of temperature and (ii) whether subcutaneous transponders can be used to remotely record subcutaneous temperature (Tsub). Five adult male dunnarts (Sminthopsis macroura, body mass 24 g) were implanted with subcutaneous transponders to determine Tsub as a function of time and ambient temperature (Ta), and in comparison to thermocouple readings of Trec. Transponder temperature was highly correlated with water bath temperature (r2=0.96–0.99) over a range of approximately 10.0–40.0 °C. Transponders provided reliable data (±0.6 °C) over the Tsub of 21.4–36.9 °C and could be read from a distance of up to 5 cm. Below 21.4 °C, accuracy was reduced to ±2.8 °C, but individual transponder accuracy varied. Consequently, small subcutaneous transponders are useful to remotely quantify thermal physiology and torpor patterns without having to disturb the animal and disrupt torpor. Even at Tsub<21.4 °C where the accuracy of the temperature readings was reduced, transponders do provide reliable data on whether and when torpor is used.  相似文献   

2.
Under optimal freeze-drying conditions, solutions exhibit a cake-like porous structure. However, if the solution temperature is higher than the glass transition temperature of the maximally freeze-concentrated phase (Tg′) during drying phase, the glassy matrix undergoes viscous flow, resulting in cake collapse. The purpose of the present study was to investigate the effect of cake collapse on the integrity of freeze-dried bull spermatozoa. In a preliminary experiment, factors affecting the Tg′ of conventional EGTA buffer (consisting of Tris–HCl, EGTA and NaCl) were investigated in order to establish the main experimental protocol because EGTA buffer Tg′ was too low (−45.0 °C) to suppress collapse. Modification of the EGTA buffer composition by complete removal of NaCl and addition of trehalose (mEGTA buffer) resulted in an increase of Tg′ up to −27.7 °C. In the main experiment, blastocyst yields after ooplasmic injection of freeze-dried sperm preserved in collapsed cakes (drying temperature: 0 or −15 °C) were significantly lower than those of sperm preserved in non-collapsed cake (drying temperature: −30 °C). In conclusion, freeze-dried cake collapse may be undesirable for maintaining sperm functions to support embryonic development, and can be inhibited by controlling both Tg′ of freeze-drying buffer and temperature during the drying phase.  相似文献   

3.
The effect of ions on the thermostability and unfolding of Na,K-ATPase from shark salt gland was studied and compared with that of Na,K-ATPase from pig kidney by using differential scanning calorimetry (DSC) and activity assays. In 1 mM histidine at pH 7, the shark enzyme inactivates rapidly at 20 °C, as does the kidney enzyme at 42 °C (but not at 20 °C). Increasing ionic strength by addition of 20 mM histidine, or of 1 mM NaCl or KCl, protects both enzymes against this rapid inactivation. As detected by DSC, the shark enzyme undergoes thermal unfolding at lower temperature (Tm ≈ 45 °C) than does the kidney enzyme (Tm ≈ 55 °C). Both calorimetric endotherms indicate multi-step unfolding, probably associated with different cooperative domains. Whereas the overall heat of unfolding is similar for the kidney enzyme in either 1 mM or 20 mM histidine, components with high mid-point temperatures are lost from the unfolding transition of the shark enzyme in 1 mM histidine, relative to that in 20 mM histidine. This is attributed to partial unfolding of the enzyme due to a high hydrostatic pressure during centrifugation of DSC samples at low ionic strength, which correlates with inactivation measurements. Addition of 10 mM NaCl to shark enzyme in 1 mM histidine protects against inactivation during centrifugation of the DSC sample, but incubation for 1 h at 20 °C prior to addition of NaCl results in loss of components with lower mid-point temperatures within the unfolding transition. Cations at millimolar concentration therefore afford at least two distinct modes of stabilization, likely affecting separate cooperative domains. The different thermal stabilities and denaturation temperatures of the two Na,K-ATPases correlate with the respective physiological temperatures, and may be attributed to the different lipid environments.  相似文献   

4.
N-acylethanolamines (NAEs) are endogenous lipid-based signaling molecules best known for their role in the endocannabinoid system in mammals, but they are also known to play roles in signaling pathways in plants. The regulation of NAEs in vivo is partly accomplished by the enzyme fatty acid amide hydrolase (FAAH), which hydrolyses NAEs to ethanolamine and their corresponding fatty acid. Inhibition of FAAH has been shown to increase the levels of NAEs in vivo and to produce desirable phenotypes. This has led to the development of pharmaceutical-based therapies for a variety of conditions targeting FAAH. Recently, our group identified a functional FAAH homolog in Dictyostelium discoideum, leading to our hypothesis that D. discoideum also possesses NAEs. In this study, we provide a further characterization of FAAH and identify NAEs in D. discoideum for the first time. We also demonstrate the ability to modulate their levels in vivo through the use of a semispecific FAAH inhibitor and confirm that these NAEs are FAAH substrates through in vitro studies. We believe the demonstration of the in vivo modulation of NAE levels suggests that D. discoideum could be a good simple model organism in which to study NAE-mediated signaling.  相似文献   

5.
A biocatalatic pathway involving chromogenic probe has been proposed for the determination of catalase activity by means of iso-nicotinicacidhydrazide (INH) and pyrocatechol (PC). The assay is based on the enzymatic consumption of hydrogen peroxide using INH-PC system. The response of the catalase activity was ascertained by the rate of the reaction involving 14.10 mM H2O2. On addition of H2O2, INH-PC indicator system formed a chromogenic product with absorbance maxima at 490 nm. Hence the activity of catalase was directly measured by the chromogenic response in the formation of the coupled product. The catalase assay was elaborated by the kinetic response of the INH-PC system. The linearity of the catalase activity and H2O2 was in the range 0.2-7.0 units and 1.76-7.0 mM, respectively in 3 ml solution. The catalytic efficiency and catalytic power were calculated. The Michaelis-Menten constant of INH, PC and H2O2 were found to be 0.344, 0.176 and 8.82 mM, respectively. The indicator reaction was applied in the determination of catalase activity in mycelia mats and culture media.  相似文献   

6.
The pulsed field gradient (pfg)-NMR method for measurements of translational diffusion of molecules in macroscopically aligned lipid bilayers is described. This technique is proposed to have an appreciable potential for investigations in the field of lipid and membrane biology. Transport of molecules in the plane of the bilayer can be successfully studied, as well as lateral phase separation of lipids and their dynamics within the bilayer organizations. Lateral diffusion coefficients depend on lipid packing and acyl chain ordering and investigations of order parameters of perdeuterated acyl chains, using 2H NMR quadrupole splittings, are useful complements. In this review we summarize some of our recent achievements obtained on lipid membranes. In particular, bilayers exhibiting two-phase coexistence of liquid disordered (ld) and liquid ordered (lo) phases are considered in detail. Methods for obtaining good oriented lipid bilayers, necessary for the pfg-NMR method to be efficiently used, are also briefly described. Among our major results, besides determinations of ld and lo phases, belongs the finding that the lateral diffusion is the same for all components, independent of the molecular structure (including cholesterol (CHOL)), if they reside in the same domain or phase in the membrane. Furthermore, quite unexpectedly CHOL seems to partition into the ldand lo phases to roughly the same extent, indicating that CHOL has no strong preference for any of these phases, i.e. CHOL seems to have similar interactions with all of the lipids. We propose that the lateral phase separation in bilayers containing one high-Tm and one low-Tm lipid together with CHOL is driven by the increasing difficulty of incorporating an unsaturated or prenyl lipid into the highly ordered bilayer formed by a saturated lipid and CHOL, i.e. the phase transition is entropy driven to keep the disorder of the hydrocarbon chains of the unsaturated lipid.  相似文献   

7.
The kinetics of single-electron injection into the oxidized nonrelaxed state (OH → EH transition) of the aberrant ba3 cytochrome oxidase from Thermus thermophilus, noted for its lowered efficiency of proton pumping, was investigated by time-resolved optical spectroscopy. Two main phases of intraprotein electron transfer were resolved. The first component (τ ∼ 17 μs) reflects oxidation of CuA and reduction of the heme groups (low-spin heme b and high-spin heme a3 in a ratio close to 50:50). The subsequent component (τ ∼ 420 μs) includes reoxidation of both hemes by CuB. This is in significant contrast to the OH → EH transition of the aa3-type cytochrome oxidase from Paracoccus denitrificans, where the fastest phase is exclusively due to transient reduction of the low-spin heme a, without electron equilibration with the binuclear center. On the other hand, the one-electron reduction of the relaxed O state in ba3 oxidase was similar to that in aa3 oxidase and only included rapid electron transfer from CuA to the low-spin heme b. This indicates a functional difference between the relaxed O and the pulsed OH forms also in the ba3 oxidase from T. thermophilus.  相似文献   

8.
We have monitored the composition of supported phospholipid bilayers during phospholipase A2 hydrolysis using specular neutron reflection and ellipsometry. Porcine pancreatic PLA2 shows a long lag phase of several hours during which the enzyme binds to the bilayer surface, but only 5 ± 3% of the lipids react before the onset of rapid hydrolysis. The amount of PLA2, which resides in a 21 ± 1 Å thick layer at the water-bilayer interface, as well as its depth of penetration into the membrane, increase during the lag phase, the length of which is also proportional to the enzyme concentration. Hydrolysis of a single-chain deuterium labelled d31-POPC reveals for the first time that there is a significant asymmetry in the distribution of the reaction products between the membrane and the aqueous environment. The lyso-lipid leaves the membrane while the number of PLA2 molecules bound to the interface increases with increasing fatty acid content. These results constitute the first direct measurement of the membrane structure and composition, including the location and amount of the enzyme during hydrolysis. These are discussed in terms of a model of fatty-acid mediated activation of PLA2.  相似文献   

9.
The present study shows that small admixtures of one chlorophyll a (Chla) molecule per several hundred lipid molecules have strong destabilizing effect on lipid bilayers. This effect is clearly displayed in the properties of the Lα-HII transformations and results from a Chla preference for the HII relative to the Lα phase. Chla disfavors the lamellar liquid crystalline phase Lα and induces its replacement with inverted hexagonal phase HII, as is consistently demonstrated by DSC and X-ray diffraction measurements on phosphatidylethanolamine (PE) dispersions. Chla lowers the Lα-HII transition temperature (42 °C) of the fully hydrated dipalmitoleoyl PE (DPoPE) by ∼ 8 °C and ∼ 17 °C at Chla/DPoPE molar ratios of 1:500 and 1:100, respectively. Similar Chla effect was recorded also for dielaidoyl PE dispersions. The lowering of the transition temperature and the accompanying significant loss of transition cooperativity reflect the Chla repartitioning and preference for the HII phase. The reduction of the HII phase lattice constant in the presence of Chla is an indication that Chla favors HII phase formation by decreasing the radius of spontaneous monolayer curvature, and not by filling up the interstitial spaces between the HII phase cylinders. The observed Chla preference for HII phase and the substantial bilayer destabilization in the vicinity of a bilayer-to-nonbilayer phase transformation caused by low Chla concentrations can be of interest as a potential regulatory or membrane-damaging factor.  相似文献   

10.
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the β-face of the planar steroid ring system and one axial methyl group projecting from the α-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations (~30–50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.  相似文献   

11.
Yakov M. Milgrom 《BBA》2010,1797(10):1768-1774
The effect of inorganic phosphate (Pi) on uni-site ATP binding and hydrolysis by the nucleotide-depleted F1-ATPase from beef heart mitochondria (ndMF1) has been investigated. It is shown for the first time that Pi decreases the apparent rate constant of uni-site ATP binding by ndMF1 3-fold with the Kd of 0.38 ± 0.14 mM. During uni-site ATP hydrolysis, Pi also shifts equilibrium between bound ATP and ADP + Pi in the direction of ATP synthesis with the Kd of 0.17 ± 0.03 mM. However, 10 mM Pi does not significantly affect ATP binding during multi-site catalysis.  相似文献   

12.
Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases that exhibit peroxidase and substantial catalase activities. Nevertheless, the reaction pathway of hydrogen peroxide dismutation, including the electronic structure of the redox intermediate that actually oxidizes H2O2, is not clearly defined. Several mutant proteins with diminished overall catalase but wild-type-like peroxidase activity have been described in the last years. However, understanding of decrease in overall catalatic activity needs discrimination between reduction and oxidation reactions of hydrogen peroxide. Here, by using sequential-mixing stopped-flow spectroscopy, we have investigated the kinetics of the transition of KatG compound I (produced by peroxoacetic acid) to its ferric state by trapping the latter as cyanide complex. Apparent bimolecular rate constants (pH 6.5, 20 °C) for wild-type KatG and the variants Trp122Phe (lacks KatG-typical distal adduct), Asp152Ser (controls substrate access to the heme cavity) and Glu253Gln (channel entrance) are reported to be 1.2 × 104 M− 1 s− 1, 30 M− 1 s− 1, 3.4 × 103 M− 1 s− 1, and 8.6 × 103 M− 1 s− 1, respectively. These findings are discussed with respect to steady-state kinetic data and proposed reaction mechanism(s) for KatG. Assets and drawbacks of the presented method are discussed.  相似文献   

13.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (∼11-15 °C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (∼23-25 °C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing ∼30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

14.
The binding affinity of the two substrate–water molecules to the water-oxidizing Mn4CaO5 catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S2 and S3 states by the exchange of bound 16O-substrate against 18O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf = 52 ± 8 s− 1 and ks = 1.9 ± 0.3 s− 1 in the S2 state, and kf = 42 ± 2 s− 1 and kslow = 1.2 ± 0.3 s− 1 in S3, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate–water site in the S2 state, which confirms beyond doubt that both substrate–water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S2 → S3 transition. Implications for recent models for water-oxidation are briefly discussed.  相似文献   

15.
A new supermolecular assembly crystal, [C6H8N2]6H3[PW12O40]·2H2O (DMB-PWA), was synthesized with phosphotungstic acid (PWA) and 1,2-diaminobenzene (DMB) under hydrothermal conditions and was characterized by Fourier-transform infrared spectra (FTIR) and single-crystal X-ray diffraction analysis. DMB-PWA could effectively catalyze oxidative degradation of chitosan with H2O2 in the heterogeneous phase. The optimum degradation conditions were determined by orthogonal tests as follows: amount of chitosan 1.00 g, 30% (wt %); H2O2, 3.0 mL; dosage of catalyst, 0.06 g; reaction temperature, 85 °C; and reaction time, 30 min. The water-soluble chitosan with a viscosity-average molecular weight (Mv) of 4900 was obtained under the optimum degradation conditions and was characterized by FTIR, ultraviolet-visible diffuse reflection spectra (UV-vis DRS), and X-ray powder diffraction analysis.  相似文献   

16.
Aqueous dispersions of 50 mM dimyristoylphosphatidylglycerol (DMPG) in the presence of increasing salt concentrations (2-500 mM NaCl) were studied by small angle X-ray scattering (SAXS) and optical microscopy between 15 and 35 °C. SAXS data show the presence of a broad peak around q ∼ 0.12 Å− 1 at all temperatures and conditions, arising from the electron density contrasts within the bilayer. Up to 100 mM NaCl, this broad peak is the main feature observed in the gel and fluid phases. At higher ionic strength (250-500 mM NaCl), an incipient lamellar repeat distance around d = 90-100 Å is detected superimposed to the bilayer form factor. The data with high salt were fit and showed that the emergent Bragg peak is due to loose multilamellar structures, with the local order vanishing after ∼ 4d. Optical microscopy revealed that up to 20 mM NaCl, DMPG is arranged in submicroscopic vesicles. Giant (loose) multilamellar vesicles (MLVs) start to appear with 50 mM NaCl, although most lipids are arranged in small vesicles. As the ionic strength increases, more and denser MLVs are seen, up to 500 mM NaCl, when MLVs are the prevailing structure. The DLVO theory could account for the experimentally found interbilayer distances.  相似文献   

17.
The kinetics of the oxidation of fully-reduced ba3 cytochrome c oxidase from Thermus thermophilus by oxygen were followed by time-resolved optical spectroscopy and electrometry. Four catalytic intermediates were resolved during this reaction. The chemical nature and the spectral properties of three intermediates (compounds A, P and O) reproduce the general features of aa3-type oxidases. However the F intermediate in ba3 oxidase has a spectrum identical to the P state. This indicates that the proton taken up during the P → F transition does not reside in the binuclear site but is rather transferred to the covalently cross-linked tyrosine near that site. The total charge translocation associated with the F → O transition in ba3 oxidase is close to that observed during the F → O transition in the aa3 oxidases. However, the PR → F transition is characterized by significantly lower charge translocation, which probably reflects the overall lower measured pumping efficiency during multiple turnovers.  相似文献   

18.
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter ∼0.1 and 0.2 μm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 °C, this temperature corresponding closely to the heat capacity maxima (Tem) of DNPC MLVs and LUVs (Tem ≈21 °C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of Tem. This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain transgauche isomerization.  相似文献   

19.
The structure of the N,N-dimethylthioformamide (DMTF) solvated gallium(III) ion has been determined in solution by means of extended X-ray absorption fine structure (EXAFS) spectroscopy. The gallium(III) ion is four-coordinate in tetrahedral fashion with a mean Ga-S bond distance of 2.233(2) Å in DMTF solution. At the dissolution of indium(III) perchlorate or trifluoromethanesulfonate in DMTF coordinated solvent molecules are partly reduced to sulfide ions, and a tetrameric complex with the composition [In4S4(SHN(CH3)2)12]4+ is formed. The structure of the solid tetrameric complex in the perchlorate salt was solved with single crystal X-ray diffraction. Four indium(III) ions and four sulfide ions form a highly symmetric heterocubane structure where each indium binds three bridging sulfide ions and each sulfide ion binds three indium(III) ions with a mean In-S bond distance of 2.584(1) Å, and S-In-S angles of 90.3(1)°. Each indium(III) additionally binds three DMTF molecules at significantly longer mean In-S bond distance, 2.703(1) Å; the S-In-S angles are in the range 80.3-90.4°. Large angle X-ray scattering data on a DMTF solution of indium(III) trifluoromethanesulfonate show that the same tetrameric species characterized in the solid state is also present in solution, whereas the EXAFS measurements only give information about the In-S bond distances due to the short core hole lifetime.  相似文献   

20.
The dinickel(II) compound [Ni2(μ-OAc)2(OAc)2(μ-H2O)(asy·dmen)2]·2.5H2O, 1; undergoes facile reaction in a 1:2 molar ratio with benzohydroxamic acid (BHA) in ethanol to give the novel nickel(II) tetranuclear hydroxamate complex [Ni4(μ-OAc)3(μ-BA)3(asy·dmen)3][OTf]2·H2O, 2, in which the bridging acetates, bridging two nickel atoms in 1, undergo a carboxylate shift from the μ211 bridging mode of binding to the μ312 bridging three nickel atoms in the tetramer. The structure of complex 2 was determined by single-crystal X-ray crystallography. The two monodentate acetates, water and two bidentate bridging acetates of two moles of complex 1 are replaced by three monodentate bridging acetates and three benzohydroxamates. Three nickel atoms in the tetramer, Ni(2), Ni(3) and Ni(4) are in a N2O4 octahedral environment, while the fourth nickel atom Ni(1) is in an O(6) octahedral environment. The Ni-Ni separations are Ni(1)-Ni(2) = 3.108 Å, Ni(1)-Ni(3) = 3.104 Å and Ni(1)-Ni(4) = 3.110 Å, which are longer than previously studied in dinuclear urease inhibited models but shorter than in the nickel(II) tetrameric glutarohydroxamate complex [Ni4(μ-OAc)2(μ-gluA2)2(tmen)4][OTf]2, isolated and characterized previously in this laboratory. Magnetic studies of the tetrameric complex show that the four Ni(II) ions are ferromagnetically coupled, leading to a total ground spin state ST = 4. Three analogous tetranuclear nickel hydroxamates were prepared from AHA and BHA and the appropriate dinuclear complex with either sy·dmen or asy·dmen as capping ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号