首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
This work is an experimental and theoretical study of electrostatic and hydrodynamic properties of the surface of sarcoplasmic reticulum (SR) membrane using particle electrophoresis. The essential structural components of SR membrane include a lipid matrix and a dense layer of Ca2 +-ATPases embedded in the matrix. The Ca2 +-ATPase layer both drives and impedes vesicle mobility. To analyze the experimental mobility data, obtained at pH 4.0, 4.7, 5.0, 6.0, 7.5, and 9.0 in 0.1 M monovalent (1:1) electrolyte, an analytical solution for the vesicle mobility and electroosmotic flow velocity distribution was obtained by solving the Poisson–Boltzmann and the Navier–Stokes–Brinkman equations. The electrophoretic mobility model includes two sets of charges that represent: (a) charged lipids of the lipid matrix of the vesicle core, and (b) charged amino acid residues of APN domains of Ca2 +-ATPases. APN domains are assumed to form a charged plane displaced from the surface of lipid matrix. The charged plane is embedded in a frictional layer that represents the surface layer of calcium pumps. Electrophoretic mobility is driven by the charged APN domain and by lipid matrix while the surface layer provides hydrodynamic friction. The charge of APN domain is determined by ionized amino acid residues obtained from the amino acid composition of SERCA1a Ca2 +-ATPase. Agreement between the measured and the predicted mobility is evaluated by the weighted sum of mobility deviation squared. This model reproduces the experimental dependence of mobility on pH and predicts that APN domains are located in the upper half of the SR vesicle surface layer.  相似文献   

2.
Electrophoretic mobility data of SR vesicles reconstituted with uncharged and two mixtures of charged and uncharged lipids (Brethes, D., Dulon, D., Johannin, G., Arrio, B., Gulik-Krzywicki, T., Chevallier, J. 1986. Study of the electrokinetic properties of reconstituted sarcoplasmic reticulum vesicles. Arch. Biochem. Biophys. 246:355–356) were analyzed in terms of four models of the membrane-water interface: (I) a smooth, negatively charged surface; (II) a negatively charged surface of lipid bilayer covered with an electrically neutral surface frictional layer; (III) an electrically neutral lipid bilayer covered with a neutral frictional layer containing a sheet of negative charge at some distance above the surface of the bilayer; (IV) an electrically neutral lipid bilayer covered with a homogeneously charged frictional layer. The electrophoretic mobility was predicted from the numerical integration of Poisson-Boltzmann and Navier-Stokes equations. Experimental results were consistent only with predictions based on Model-III with charged sheet about 4 nm above the bilayer and frictional layer about 10 nm thick. Assuming that the charge of the SR membrane is solely due to that on Ca++-ATPase pumps, the dominant SR protein, the mobility data of SR and reconstituted SR vesicles are consistent with 12 electron charges/ATPase. This value compares well to the net charge of the cytoplasmic portion of ATPase estimated from the amino acid sequence (-11e). The position of the charged sheet suggests that the charge on the ATPase is concentrated in the middle of the cytoplasmic portion. The frictional layer of SR can be also assigned to the cytoplasmic portion of Ca++-ATPase. The layer has been characterized with hydrodynamic shielding length of 1.1 nm. Its thickness is comparable to the height of the cytoplasmic portion of Ca++-ATPase. Received: 15 June 1998/Revised: 8 October 1998  相似文献   

3.
Chemical cross-linking was used to study protein binding interactions between native phospholamban (PLB) and SERCA2a in sarcoplasmic reticulum (SR) vesicles prepared from normal and failed human hearts. Lys27 of PLB was cross-linked to the Ca2+ pump at the cytoplasmic extension of M4 (at or near Lys328) with the homobifunctional cross-linker, disuccinimidyl glutarate (7.7 Å). Cross-linking was augmented by ATP but abolished by Ca2+ or thapsigargin, confirming in native SR vesicles that PLB binds preferentially to E2 (low Ca2+ affinity conformation of the Ca2+-ATPase) stabilized by ATP. To assess the functional effects of PLB binding on SERCA2a activity, the anti-PLB antibody, 2D12, was used to disrupt the physical interactions between PLB and SERCA2a in SR vesicles. We observed a tight correlation between 2D12-induced inhibition of PLB cross-linking to SERCA2a and 2D12 stimulation of Ca2+-ATPase activity and Ca2+ transport. The results suggest that the inhibitory effect of PLB on Ca2+-ATPase activity in SR vesicles results from mutually exclusive binding of PLB and Ca2+ to the Ca2+ pump, requiring PLB dissociation for catalytic activation. Importantly, the same result was obtained with SR vesicles prepared from normal and failed human hearts; therefore, we conclude that PLB binding interactions with the Ca2+ pump are largely unchanged in failing myocardium.  相似文献   

4.
Reaction of [CuIIL⊂(H2O)] (H2L = N,N′-ethylenebis(3-ethoxysalicylaldimine)) with nickel(II) perchlorate in 1:1 ratio in acetone produces the trinuclear compound [(CuIIL)2NiII(H2O)2](ClO4)2 (1). On the other hand, on changing the solvent from acetone to methanol, reaction of the same reactants in same ratio produces the pentametallic compound [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)]·2MeOH (2A), which loses solvated methanol molecules immediately after its isolation to form [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)] (2B). Clearly, formation of 1 versus 2A and 2B is solvent dependent. Crystal structures of 1 and 2A have been determined. Interestingly, compound 2A is a [3 × 1 + 1 × 2] cocrystal. The cryomagnetic profiles of 1 and 2B indicate that the two pairs of copper(II)···nickel(II) ions in the trinuclear cores in both the complexes are coupled by almost identical moderate antiferromagnetic interaction (J = −22.8 cm−1 for 1 and −26.0 cm−1 for 2B).  相似文献   

5.
Cobalt(III) and rhodium(III) complexes of the series of [MIIICl3 − n(P)3 + n]n+ (M = Co or Rh; n = 0, 1, 2 or 3) have been prepared with the use of 1,1,1-tris(dimethylphosphinomethyl)ethane (tdmme) and mono- or didentate phosphines. The single-crystal X-ray analyses of both series of complexes revealed that the M-P and M-Cl bond lengths were dependent primarily on the strong trans influence of the phosphines, and secondarily on the steric congestion around the metal center resulting from the coordination of several phosphine groups. In fact, the M-P(tdmme) bonds became longer in the order of [MCl3(tdmme)] < [MCl2(tdmme)(PMe3)]+ < [MCl(tdmme)(dmpe)]2+ (dmpe = 1,2-bis(dimethylphosphino)ethane) < [M(tdmme)2]3+ for both CoIII and RhIII series of complexes, while the M-Cl bond lengths were shortened in this order (except for [M(tdmme)2]3+). Such a steric congestion around the metal center can also account for the structural and spectroscopic characteristics of the series of complexes, [MCl(tdmme)(dmpm, dmpe or dmpp)]2+ (dmpm = bis(dimethylphosphino)methane, dmpp = 1,3-bis(dimethylphosphino)propane). The X-ray analysis for [CoCl(tdmme)(dmpm or dmpe)](BF4)2 showed that all Co-P bonds in the dmpm complex were shorter by 0.03-0.04 Å than those in the dmpe complex. Furthermore, the first d-d transition energy of the CoIII complexes and the 1JRh-P(tdmme) coupling constants observed for the RhIII complexes indicated an unusual order in the coordination bond strengths of the didentate diphosphines, i.e., dmpm > dmpe > dmpp.  相似文献   

6.
The complexes AgI(tripod)X with tripod = 1,1,1-tris(diphenylphosphinomethyl)ethane and X = Cl and I are luminescent in solution at r.t. It is suggested that the emission is a phosphorescence which originates from a tripod intraligand state for X = Cl (λmax = 464 nm) and a X → tripod ligand-to-ligand charge transfer state for X = I (λmax = 482 nm).  相似文献   

7.
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca2+ signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca2+-uptake and Ca2+-ATPase activity in a biphasic manner. [3H]-ryanodine binding and passive Ca2+ release from SR vesicles were not altered by 10 μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 μg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3 μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3 μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.  相似文献   

8.
Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca2 +-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca2+-ATPase, with the following IC50 values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb10), is the strongest P-type enzyme inhibitor, after decavanadate (V10). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca2 +-ATPase stoichiometry. Furthermore, V10 binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H2VO42 −; V1) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca2 +-ATPase, with a dissociation constant, kd of 1 μM− 1. The interaction of decavanadate V10O286 − (V10) with Ca2 +-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb10O286 − (Nb10), whereas no significant effects were detected with ATP or with heparin, a known competitive ATP binding molecule, suggesting that V10 binds non-competitively, with respect to ATP, to the protein. Finally, it was shown that decaniobate inhibits SR Ca2 +-ATPase activity in a non competitive type of inhibition, with respect to ATP. Taken together, these data demonstrate that decameric niobate and vanadate species are stronger inhibitors of the SR calcium ATPase than simple monomeric vanadate, tungstate and molybdate oxometalates, thus affecting calcium homeostasis, cell signalling and cell bioenergetics, as well many other cellular processes. The ability of these oxometalates to act either as phosphate analogues, as a transition-state analogue in enzyme-catalysed phosphoryl group transfer processes and as potentially nucleotide-dependent enzymes modulators or inhibitors, suggests that different oxometalates may reveal different mechanistic preferences in these classes of enzymes.  相似文献   

9.
Protonation of the Ca2+ ligands of the SR Ca2+-ATPase (SERCA1a) was studied by a combination of rapid scan FTIR spectroscopy and electrostatic calculations. With FTIR spectroscopy, we investigated the pH dependence of CO bands of the Ca2+-free phosphoenzyme (E2P) and obtained direct experimental evidence for the protonation of carboxyl groups upon Ca2+ release. At least three of the infrared signals from protonated carboxyl groups of E2P are pH dependent with pKa values near 8.3: a band at 1758 cm−1 characteristic of nonhydrogen-bonded carbonyl groups, a shoulder at 1720 cm−1, and part of a band at 1710 cm−1, both characteristic of hydrogen-bonded carbonyl groups. The bands are thus assigned to H+ binding residues, some of which are involved in H+ countertransport. At pH 9, bands at 1743 and 1710 cm−1 remain which we do not attribute to Ca2+/H+ exchange. We also obtained evidence for a pH-dependent conformational change in β-sheet or turn structures of the ATPase. With MCCE on the E2P analog E2(), we assigned infrared bands to specific residues and analyzed whether or not the carbonyl groups of the acidic Ca2+ ligands are hydrogen bonded. The carbonyl groups of Glu771, Asp800, and Glu908 were found to be hydrogen bonded and will thus contribute to the lower wave number bands. The carbonyl group of some side-chain conformations of Asp800 is left without a hydrogen-bonding partner; they will therefore contribute to the higher wave number band.  相似文献   

10.
A dissymmetrical double Schiff base Cu(II) mononuclear complex: CuHL (1) (where H3L is N-3-carboxylsalicylidene-N-salicylaldehyde-1,2-diaminoethane) and two trinuclear complexes: [CuL(H2O)CoCuL] · H2O · CH3OH (2) and [(CuL)2Ni] · 2H2O (3) have been synthesized and characterized by means of elemental analyses, IR and electronic spectra. The crystal structures of two heterotrinucler complexes were determined by X-ray analysis. Each dissymmetrical cell unit of the complex 2 contains two heterotrinucler neutral molecules. In each neutral molecule, the central Co2+ ion is located at the site of O6 with a distorted octahedral geometry and one terminal Cu2+ ion at the four-coordination site of N2O2, but the other one at the square-pyramidal environment of N2O3. Each dissymmetrical unit of the complex 3 contains a heterotrinucler neutral molecule, whose structure is similar to that of 2 except two terminal Cu2+ ions both at the inner site of N2O2. The magnetic properties of two heterotrinucler complexes have been determined in the temperature range of 5-300 K, which indicate that the interaction between the central Co2+ ion or Ni2+ ion and the outer Cu2+ ions is antiferromagnetic. The exchange integrals are equal to −26.2 cm−1 for 2 and −50.6 cm−1 for 3.  相似文献   

11.
12.
The conformational states of Ca2+-ATPase in sarcoplasmic reticulum (SR) vesicles with or without a thousand-fold transmembrane Ca2+ gradient have been studied by fluorescence spectroscopy and fluorescence quenching. In consequence of the establishment of the transmembrane Ca2+ gradient, the steady-state fluorescence results revealed a reproducible 8% decrease in the intrinsic fluorescence while time-resolved fluorescence measurements showed that 13 tryptophan residues in SR · Ca2+-ATPase could be divided into three groups. The fluorescence lifetime of one of these groups increased from 5.5 ns to 5.95 ns in the presence of a Ca2+ gradient. Using KI and hypocrellin B (a photosensitive pigment obtained from a parasitic fungus, growing in Yunnan, China), the fluorescence quenching further indicated that the dynamic change of this tryptophan group, located at the protein-lipid interface, is a characteristic of transmembrane Ca2+ gradient-mediated conformational changes in SR · Ca2+-ATPase.Abbreviations SR sarcoplasmic reticulum - HB hypocrellin B - Trp tryptophan - DMSO dimethysulfoxide - Hepes N-2-hydroxyethyl piperazine-N-ethanesulfonic acad - SR(50005) SR vesicles with 1000-fold transmembrane Ca2+ gradient - SR(5050) SR vesicles without Ca2+ gradient - Ksv(app) apparent Stern-Volmer constant - Ksvi Stern-Volmer constant of component i for dynamic quenching  相似文献   

13.
Phosphoryl-transfer reactions have long been of interest due to their importance in maintaining numerous cellular functions. A phosphoryl-transfer reaction results in two possible stereochemical outcomes: either retention or inversion of configuration at the transferred phosphorus atom. When the product is phosphate, isotopically-labeled [16O, 17O, 18O]-phosphate derivatives can be used to distinguish these outcomes; one oxygen must be replaced by sulfur or esterified to achieve isotopic chirality. Conventionally, stereochemical analysis of isotopically chiral phosphate has been based on 31P NMR spectroscopy and involves complex chemical or enzymatic transformations. An attractive alternative would be direct determination of the enantiomeric excess using chiroptical spectroscopy. (S)-Methyl-[16O, 17O, 18O]-phosphate (MePi), 7 and enantiomeric [16O, 17O, 18O]-thiophosphate (TPi), 10, were previously reported to exhibit weak electronic circular dichroism (ECD), although with 10 the result was considered to be uncertain. We have now re-examined the possibility that excesses of 7 and 10 enantiomers can be detected by ECD spectrometry, using both experimental and theoretical approaches. 7 and both the (R) and (S) enantiomers of 10 (10a10b) were synthesized by the ‘Oxford route’ and characterized by 1H, 31P and 17O NMR, and by MS analysis. Weak ECD could be found for 7, with suboptimal S/N. No significant ECD could be detected for the 10 enantiomers.Time-dependent DFT (TDDFT) calculations of the electronic excitation energies and rotational strengths of the same three enantiomers were carried out using the functional B3LYP and the basis set 6-311G∗∗. The isotopically-perturbed geometries were predicted using the anharmonic vibrational frequency calculational code in GAUSSIAN 03. In the case of 10, calculations were also carried out for the hexahydrated complex to investigate the influence of the aqueous solvent. The predicted excitation wavelengths are greater than the observed wavelengths, a not unusual result of TDDFT calculations. The predicted anisotropy ratios are 2.9 × 10−5 for 7, −5.3 × 10−6 for 10a/b, and 1.7 × 10−6 for 10a/b⋅(H2O)6. For 7 the predicted anisotropy ratio approximates that observed in this work, 4.5 × 10−5 at 208 nm. For 10a/b, the upper limits of the experimental anisotropy ratios (<5 × 10−6 at 225 nm, pH 9; <5 × 10−6 at 236 nm, pH 12) are comparable to the predicted magnitude of the value for 10a/b. The lower predicted value for 10a/b · (H2O)6 suggests that the aqueous environment affects the ECD significantly. Altogether, the TDDFT calculations together with a stereochemical analysis based on NMR and the MS data support the conclusion that the experimental ECD results for MePi and TPi may be reliable in order of magnitude.  相似文献   

14.
The stability constants and the thermodynamic parameters of the formation of the binary complexes of trivalent Am3+, Cm3+ and Eu3+ with CDTA and of their ternary complexes with CDTA + IDA were determined by solvent extraction measurements in aqueous solutions of I = 6.60 m (NaClO4) at temperatures of 0-60 °C. The endothermic enthalpy and the positive entropy values reflect the significant effects of cation dehydration and of the rigidity of the ligand structure in the formation of these complexes. TRLFS and NMR (1H and 13C) data provided information on the structure of the ternary complexes in solution. The size and rigidity of CDTA affect the binding mode of IDA in the complexation of M(CDTA)(IDA)(H2O)3− and M(CDTA)(IDA)3− in which IDA has a bidentate coordination mode in the former and a tridentate coordination mode in the latter.  相似文献   

15.
Synthesis, X-ray crystal structure and IR spectrum of {[MnII(Im)6] · 2(2-IC) · 2(NC) · 2(DMSO)} (Im = imidazole, 2-HIC = indole-2-carboxylic acid, NC = 2,9-dimethyl-1,10-phenanthroline, DMSO = dimethyl sulfoxide) are reported. The manganese(II) ion has octahedral geometry with a MnN6 core. The crystal structure is completed by two NC, two 2-IC and two DMSO solvate molecules. The individual cations are linked into chains running parallel to the a axis by four intermolecular hydrogen bonding involving two 2-ICsolvate. Moreover, these chains are connected by π-π stacking interactions which occur between neocuproine molecules related through inversion center. In IR spectroscopy, the compound spectrum is roughly similar to the imidazole one: (i) above 1800 cm−1, the bands are broad, but when focussing on some of them a doublet structure can be found; (ii) below 1800 cm−1, the bands are sharp and it is then possible to point out the modification of S-O band when this later is involved in bifurcated hydrogen bonding to a second solvate 2-IC. The compound catalyses the disproportionation of H2O2; moreover an additional quantity of imidazole increases the reaction rate.  相似文献   

16.
The ruthenium-nitrosyl complexes [RuII(trpy)(tmp)(NO+)](ClO4)3 ([4](ClO4)3) and [RuII(trpy)(tmp)(NO)](ClO4)2 ([5](ClO4)2) with {Ru-NO}6 and {Ru-NO}7 configurations, respectively (trpy = 2,2′:6′,2′′-terpyridine, tmp = 3,4,7,8-tetramethyl-1,10-phenanthroline) have been isotaled. The nitrosyl complexes [4]3+ and [5]2+ have been generated by following a stepwise synthetic procedure: [RuII(trpy)(tmp)(X)]n, X/n = Cl/+ (1+) → CH3CN/2+ (22+) → NO2/+ (3+) → NO+/3+ (43+) → NO/2+ (52+). The single-crystal X-ray structures of two precursor complexes [1]ClO4 and [3]ClO4 have been determined. The DFT optimized structures of 43+ and 52+ suggest that the Ru-N-O geometries in the complexes are linear (177.9°) and bent (141.4°), respectively. The nitrosyl complexes with linear (43+) and bent (52+) geometries exhibit ν(NO) frequencies at 1935 cm−1 (DFT: 1993 cm−1) and 1635 cm−1 (DFT: 1684 cm−1), respectively. Complex 43+ undergoes two successive reductions at 0.25 V (reversible) and −0.48 V (irreversible) versus SCE involving the redox active NO function, RuII-NO+ ? RuII-NO and RuII-NO → RuII-NO, respectively, besides the reductions of trpy and tmp at more negative potentials. The DFT calculations on the optimized 43+ suggest that LUMO and LUMO+1 are dominated by NO+ based orbitals of around 65% contribution along with partial metal contribution of ∼25% due to (dπ)RuII → π∗(NO+) back-bonding. The lowest energy transitions in 43+ and 52+ at 360 nm and 467 nm in CH3CN (TD-DFT: 364 and 459 nm) have been attributed to mixed MLLCT transitions of tmp(π) → NO+(π∗), Ru(dπ)/tmp(π) → NO+) and Ru(dπ)/NO(π) → trpy(π), respectively. The paramagnetic reduced species 52+ exhibits an anisotropic EPR spectrum with g1 = 2.018, g2 = 1.994, g3 = 1.880 (〈g〉 = 1.965 and Δg = 0.138) in CH3CN, along with 14N (I = 1) hyperfine coupling constant, A2 = 35 G at 110 K due to partial metal contribution in the singly occupied molecular orbital (DFT:SOMO:Ru (34%) and NO (53%)). Consequently, Mulliken spin distributions in 52+ are calculated as 0.115 for Ru and 0.855 for NO (N, 0.527; O, 0.328). The reaction of moderately electrophilic nitrosyl center in 43+ with the nucleophile, OH yields the nitro precursor, 3+ with the second-order rate constant value of 1.7 × 10−1 M−1 s−1 at 298 K in CH3CN-H2O (10:1). On exposure to light (Xenon 350 W lamp) both the nitrosyl species, 43+ ({RuII-NO+}) and 52+ ({RuII-NO}) undergo photolytic Ru-NO bond cleavage process but with a widely varying kNO, s−1 (t1/2, s) of 1.56 × 10−1(4.4) and 0.011 × 10−1(630), respectively.  相似文献   

17.
Miltefosine has been shown to be a very active compound against Trypanosoma cruzi. Here, we evaluated the effects of miltefosine on the activity of the Na+-ATPase and protein kinase C (PKC) present in the plasma membrane of T. cruzi. Furosemide (2 mM), a specific inhibitor of Na+-ATPase, abolished the growth of T. cruzi showing a crucial role of this enzyme to parasite growth. Miltefosine inhibited the Na+-ATPase activity with IC50 = 18 ± 5 μg mL−1. This effect was shown to be reversible, dependent on the pH and Ca2+. The inhibition was not observed when the membranes were solubilized with 0.1% deoxycholate, suggesting that the interaction between the enzyme and membrane phospholipids might be important for the drug effect. Miltefosine also inhibited the parasite PKC activity, but through a Na+-ATPase-independent way. Altogether the results indicate that miltefosine inhibits T. cruzi growth through, at least in part, the inhibition of both Na+-ATPase and PKC activities.  相似文献   

18.
Human EFHC1 is a member of the EF-hand superfamily of Ca2+-binding proteins with three DM10 domains of unclear function. Point mutations in the EFHC1 gene are related to juvenile myoclonic epilepsy, a fairly common idiopathic generalized epilepsy. Here, we report the first structural and thermodynamic analyses of the EFHC1C-terminus (residues 403-640; named EFHC1C), comprising the last DM10 domain and the EF-hand motif. Circular dichroism spectroscopy revealed that the secondary structure of EFHC1C is composed by 34% of α-helices and 17% of β-strands. Size exclusion chromatography and mass spectrometry showed that under oxidizing condition EFHC1C dimerizes through the formation of disulfide bond. Tandem mass spectrometry (MS/MS) analysis of peptides generated by trypsin digestion suggests that the Cys575 is involved in intermolecular S-S bond. In addition, DTNB assay showed that each reduced EFHC1C molecule has one accessible free thiol. Isothermal titration calorimetry (ITC) showed that while the interaction between Ca2+ and EFHC1C is enthalpically driven (ΔH = −58.6 to −67 kJ/mol and TΔS = −22.5 to −31 kJ/mol) the interaction between Mg2+ and EFHC1C involves an entropic gain, and is ∼5 times less enthalpically favorable (ΔH = −11.7 to −14 kJ/mol and TΔS = 21.9 to 19 kJ/mol) than for Ca2+ binding. It was also found that under reducing condition Ca2+ or Mg2+ ions bind to EFHC1C in a 1/1 molar ratio, while under oxidizing condition this ratio is reduced, showing that EFHC1C dimerization blocks Ca2+ and Mg2+ binding.  相似文献   

19.
Microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings accumulate Ca2+ upon addition of MgATP. MgATP-dependent Ca2+ uptake co-migrates with the plasma membrane H+-ATPase on a sucrose gradient. Ca2+ uptake is insensitive to oligomycin, inhibited by vanadate (IC50 40 micromolar) and erythrosin B (IC50 0.2 micromolar) and displays a pH optimum between pH 6.6 and 6.9. MgATP-dependent Ca2+ uptake is insensitive to protonophores. These results indicate that Ca2+ transport in these microsomal vesicles is catalyzed by a Mg2+-dependent ATPase localized on the plasma membrane. Ca2+ strongly reduces ΔpH generation by the plasma membrane H+-ATPase and increases MgATP-dependent membrane potential difference (Δψ) generation. These effects of Ca2+ on ΔpH and Δψ generation are drastically reduced by micromolar erythrosin B, indicating that they are primarily a consequence of Ca2+ uptake into plasma membrane vesicles. The Ca2+-induced increase of Δψ is collapsed by permeant anions, which do not affect Ca2+-induced decrease of ΔpH generation by the plasma membrane H+-ATPase. The rate of decay of MgATP-dependent ΔpH, upon inhibition of the plasma membrane H+-ATPase, is accelerated by MgATP-dependent Ca2+ uptake, indicating that the decrease of ΔpH generation induced by Ca2+ reflects the efflux of H+ coupled to Ca2+ uptake into plasma membrane vesicles. It is therefore proposed that Ca2+ transport at the plasma membrane is mediated by a Mg2+-dependent ATPase which catalyzes a nH+/Ca2+ exchange.  相似文献   

20.
Phospholamban (PLB) is an integral membrane protein regulating Ca2+ transport through inhibitory interaction with sarco(endo)plasmic reticulum calcium ATPase (SERCA). The Asn27 to Ala (N27A) mutation of PLB has been shown to function as a superinhibitor of the affinity of SERCA for Ca2+ and of cardiac contractility in vivo. The effects of this N27A mutation on the side-chain and backbone dynamics of PLB were investigated with 2H and 15N solid-state NMR spectroscopy in phospholipid multilamellar vesicles (MLVs). 2H and 15N NMR spectra indicate that the N27A mutation does not significantly change the side-chain or backbone dynamics of the transmembrane and cytoplasmic domains when compared to wild-type PLB. However, dynamic changes are observed for the hinge region, in which greater mobility is observed for the CD3-labeled Ala24 N27A-PLB. The increased dynamics in the hinge region of PLB upon N27A mutation may allow the cytoplasmic helix to more easily interact with the Ca2+-ATPase; thus, showing increased inhibition of Ca2+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号