首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron paramagnetic resonance (EPR) spectroscopy was used to detect the light-induced formation of singlet oxygen (1O2*) in the intact and the Rieske-depleted cytochrome b6f complexes (Cyt b6f) from Bryopsis corticulans, as well as in the isolated Rieske Fe–S protein. It is shown that, under white-light illumination and aerobic conditions, chlorophyll a (Chl a) bound in the intact Cyt b6f can be bleached by light-induced 1O2*, and that the 1O2* production can be promoted by D2O or scavenged by extraneous antioxidants such as l-histidine, ascorbate, β-carotene and glutathione. Under similar experimental conditions, 1O2* was also detected in the Rieske-depleted Cyt b6f complex, but not in the isolated Rieske Fe–S protein. The results prove that Chl a cofactor, rather than Rieske Fe–S protein, is the specific site of 1O2* formation, a conclusion which draws further support from the generation of 1O2* with selective excitation of Chl a using monocolor red light.  相似文献   

2.
The cyanobacterium Acaryochloris marina was cultured in the presence of either H218O or 18O2, and the newly synthesized chlorophylls (Chl a and Chl d) were isolated using high performance liquid chromatography and analyzed by mass spectroscopy. In the presence of H218O, newly synthesized Chl a and d, both incorporated up to four isotopic 18O atoms. Time course H218O labeling experiments showed incorporation of isotopic 18O atoms originating from H218O into Chl a, with over 90% of Chl a 18O-labeled at 48 h. The incorporation of isotopic 18O atoms into Chl d upon incubation in H218O was slower compared with Chl a with ∼50% 18O-labeled Chl d at 115 h. The rapid turnover of newly synthesized Chl a suggested that Chl a is the direct biosynthetic precursor of Chl d. In the presence of 18O2 gas, one isotopic 18O atom was incorporated into Chl a with approximately the same kinetic incorporation rate observed in the H218O labeling experiment, reaching over 90% labeling intensity at 48 h. The incorporation of two isotopic 18O atoms derived from molecular oxygen (18O2) was observed in the extracted Chl d, and the percentage of double isotopic 18O-labeled Chl d increased in parallel with the decrease of non-isotopic-labeled Chl d. This clearly indicated that the oxygen atom in the C31-formyl group of Chl d is derived from dioxygen via an oxygenase-type reaction mechanism.  相似文献   

3.
3,8-Divinyl-chlorophyll(Chl)-a possessing a phytyl ester was hydrogenated in acetone by rhodium catalyst on alumina to afford 3-vinyl-8-ethyl-, 3-ethyl-8-vinyl- and 3,8-diethyl-Chls. The ratio of produced 3-ethyl-8-vinyl- over 3-vinyl-8-ethyl-Chls was determined to be 1.2, indicating that the reactivity of the 3-vinyl group was slightly higher than that of the 8-vinyl group. Catalytic hydrogenation of divinyl-protochlorophyll-a possessing a porphyrin ??-skeleton (C17C18) instead of the above chlorin moiety (C17H-C18H) gave an equal amount of mono-reduced regioisomers. The slight (or no) selectivity is different from that in the enzymatic reduction of divinyl-(proto)chlorophyllides-a lacking a phytyl ester in the biosynthetic pathway of Chl-a where the sole 8-vinyl group is transformed to the ethyl group.  相似文献   

4.
Oxygen-evolving Photosystem II particles (crude PSII) retaining a high oxygen-evolving activity have been prepared from a marine centric diatom, Chaetoceros gracilis (Nagao et al., 2007). The crude PSII, however, contained a large amount of fucoxanthin chlorophyll a/c-binding proteins (FCP). In this study, a purified PSII complex which was deprived of major components of FCP was isolated by one step of anion exchange chromatography from the crude PSII treated with Triton X-100. The purified PSII was still associated with the five extrinsic proteins of PsbO, PsbQ', PsbV, Psb31 and PsbU, and showed a high oxygen-evolving activity of 2135 μmol O2 (mg Chl a)− 1 h− 1 in the presence of phenyl-p-benzoquinone which was virtually independent of the addition of CaCl2. This activity is more than 2.5-fold higher than the activity of the crude PSII. The activity was completely inhibited by 3-(3,4)-dichlorophenyl-(1,1)-dimethylurea (DCMU). The purified PSII contained 42 molecules of Chl a, 2 molecules of diadinoxanthin and 2 molecules of Chl c on the basis of two molecules of pheophytin a, and showed typical absorption and fluorescence spectra similar to those of purified PSIIs from the other organisms. In this study, we also found that the crude PSII was significantly labile, as a significant inactivation of oxygen evolution, chlorophyll bleaching and degradation of PSII subunits were observed during incubation at 25 °C in the dark. In contrast, these inactivation, bleaching and degradation were scarcely detected in the purified PSII. Thus, we succeeded for the first time in preparation of a stable PSII from diatom cells.  相似文献   

5.
The interaction of chlorophylls a and b with electrochemically prepared superoxide anion was studied in aprotic solvent. It was found that O2?·causes the deprotonation at carbon C-10 of ring V and production of chlorophyll enolate ions. The intermediate anions undergo rapid oxidation into corresponding chlorins. Pyrochlorophyll a, which lacks the C-10 carboxymethyl group, did not show the transformation. It is suggested that more strong free radical oxidants (e.g., HO2·, or RO2·) are capable of abstracting the hydrogen atom at C-10. The possible significance of free radical deprotonation and oxidation in chlorophyll allomerization is discussed.  相似文献   

6.
Stephanie Pröll  Bruno Robert 《BBA》2006,1757(7):750-763
Complexes were prepared of horse heart myoglobin with derivatives of (bacterio)chlorophylls and the linear tetrapyrrole, phycocyanobilin. Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol. Binding is further modulated by the stereochemistry at the isocyclic ring. The binding pocket can act as a reaction chamber: with enolizable substrates, apo-myoglobin acts as a 132-epimerase converting, e.g., Zn-pheophorbide a' (132S) to a (132R). Light-induced reduction and oxidation of the bound pigments are accelerated as compared to solution. Some flexibility of the myoglobin is required for these reactions to occur; a nucleophile is required near the chromophores for photoreduction (Krasnovskii reaction), and oxygen for photooxidation. Oxidation of the bacteriochlorin in the complex and in aqueous solution continues in the dark.  相似文献   

7.
In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx–Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300 fs. Chl c transferred excitation energy to Chl a with time constants of 500–600 fs (intra-complex transfer), 600–700 fs (intra-complex transfer), and 4–6 ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

8.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 μmol O2/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 μmol O2/mg Chl/h in the absence and presence of CaCl2, respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.  相似文献   

9.

Background

Melatonin is well-established as a powerful reducing agent of oxidant generated in the cell medium. We aimed to investigate how readily melatonin is oxidized by peroxyl radicals ROO⋅ generated by the thermolysis of 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH) and the role of glutathione (GSH) during the reaction course.

Methods

Chromatographic, mass spectroscopy, and UV–visible spectrometric techniques were used to study the oxidation of melatonin by ROO⋅ or horseradish peroxidase (HRP)/H2O2. Our focus was the characterization of products and the study of features of the reaction.

Results

We found that N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and a monohydroxylated derivative of melatonin were the main products of the reaction between melatonin and ROO⋅. Higher pH or saturation of the medium with molecular oxygen increased the yield of AFMK but did not affect the reaction rate. Melatonin increased the depletion of intracellular GSH mediated by AAPH. Using the HRP/H2O2 as the oxidant system, the addition of melatonin promoted the oxidation of GSH to GSSG.

Conclusions

These results show, for the first time, that melatonin radical is able to oxidize GSH.

General significance

We propose that this new property of melatonin could explain or be related to the recently reported pro-oxidant activities of melatonin.  相似文献   

10.
Chlorophyll (Chl) d is a major chlorophyll in a novel oxygenic prokaryote Acaryochloris marina. Here we first report the redox potential of Chl d in vitro. The oxidation potential of Chl d was + 0.88 V vs. SHE in acetonitrile; the value was higher than that of Chl a (+ 0.81 V) and lower than that of Chl b (+ 0.94 V). The oxidation potential order, Chl b > Chl d > Chl a, can be explained by inductive effect of substituent groups on the conjugated π-electron system on the macrocycle. Corresponding pheophytins showed the same order; Phe b (+ 1.25 V) > Phe d (+ 1.21 V) > Phe a (+ 1.14 V), but the values were significantly higher than those of Chls, which are rationalized in terms of an electron density decrease in the π-system by the replacement of magnesium with more electronegative hydrogen. Consequently, oxidation potential of Chl a was found to be the lowest among Chls and Phes. The results will help us to broaden our views on photosystems in A. marina.  相似文献   

11.
The triplet state of the carotenoid peridinin, populated by triplet-triplet energy transfer from photoexcited chlorophyll triplet state, in the reconstituted Peridinin-Chlorophyll a-protein, has been investigated by ODMR (Optically detected magnetic resonance), and pulse EPR spectroscopies. The properties of peridinins associated with the triplet state formation in complexes reconstituted with Chl a and Chl d have been compared to those of the main-form peridinin-chlorophyll protein (MFPCP) isolated from Amphidinium carterae. In the reconstituted samples no signals due to the presence of chlorophyll triplet states have been detected, during either steady state illumination or laser-pulse excitation. This demonstrates that reconstituted complexes conserve total quenching of chlorophyll triplet states, despite the biochemical treatment and reconstitution with the non-native Chl d pigment. Zero field splitting parameters of the peridinin triplet states are the same in the two reconstituted samples and slightly smaller than in native MFPCP. Analysis of the initial polarization of the photoinduced Electron-Spin-Echo detected spectra and their time evolution, shows that, in the reconstituted complexes, the triplet state is probably localized on the same peridinin as in native MFPCP although, when Chl d replaces Chl a, a local rearrangement of the pigments is likely to occur. Substitution of Chl d for Chl a identifies previously unassigned bands at ∼ 620 and ∼ 640 nm in the Triplet-minus-Singlet (T − S) spectrum of PCP detected at cryogenic temperature, as belonging to peridinin.  相似文献   

12.
The Stay-Green Rice (SGR) protein is encoded by the SGR gene and has been shown to affect chlorophyll (Chl) degradation during natural and dark-induced leaf senescence. An SGR homologue, SGR-like (SGRL), has been detected in many plant species. We show that SGRL is primarily expressed in green tissues, and is significantly downregulated in rice leaves undergoing natural and dark-induced senescence. As the light intensity increases during the natural photoperiod, the intensity of SGRL expression declines while that of SGR expression increases. Overexpression of SGRL reduces the levels of Chl and Chl-binding proteins in leaves, and accelerates their degradation in dark-induced senescence leaves in rice. Our results suggest that the SGRL protein is also involved in Chl degradation. The relationship between SGRL and SGR and their effects on the degradation of the light-harvesting Chl a/b-binding protein are also discussed.  相似文献   

13.
With the use of low temperature spectrofluorometry and matrix calculations it was demonstrated that the chlorophyll a pool of higher plants is made up of four different chlorophyll a chromophores. The latter were segregated by high pressure liquid chromatography on a silica column. They were designated Chl a (E432 F664), Chl a (E436 F670), Chl a (E443 F672) and Chl a (E446 F674), where E refers to the Soret excitation maximum and F to the fluorescence emission maximum at 77 K in ether. Likewise the Chl b pool was shown to consist of at least four different Chl b chromophores which were designated: Chl b (E465), Chl b (E470), Chl b (E475) and Chl b (E485). It was proposed that the various chlorophyll chromophores differed by the degree of oxidation of their side chains at the 2 and 4 positions of the macrocycle. It was also suggested that the chemical modifications at the 2 and 4 positions of the macrocycle may play an important role in positioning the different chlorophyll chromophores in the thylakoid membranes.  相似文献   

14.
The egg production of the copepod Acartia bifilosa was measured and related to environmental variables and food availability in two estuaries located in the same biogeographic region (Bay of Biscay) but showing very strong differences in abiotic and biotic features: the Gironde estuary (France) and the estuary of Mundaka (Spain). The study was conducted during the spring-summer-autumn period of 1994. Food availability was evaluated by analysing the chlorophyll a (Chl a), the particulate organic carbon (POC) and the easily extractable macromolecular compounds such as proteins, carbohydrates and lipids of the seston. The egg production of copepods was estimated from field incubations with natural water, and phytoplankton feeding of adult females was estimated by means of the gut fluorescence method. The nutritional environment of the Gironde was characterised by high amounts of suspended particulate matter (SPM) with low food value, emphasising the mainly detrital origin of the organic matter (OM). In Mundaka, the higher contribution of phytoplankton to the seston led to marked increases in particulate food value accounting for up to 35% of organic matter. The weight-specific egg production was found to be sharply higher in Mundaka (ranging from 0.2 to 0.63×10−3 day−1) than in the Gironde (ranging from 0 to 0.13×10−3 day−1), but the seasonal trend of variations was similar, the highest weight-specific egg production rates occurring in early summer and the lowest in autumn in both estuaries. Egg production was not correlated linearly with temperature since maximal egg production occurred at intermediate temperatures. In Mundaka, the egg production showed a significant positive correlation with the chlorophyll and the Chl/SPM and the POC/SPM ratios. This coupled with higher values of algal food availability (Chl a/SPM: 10 to 1870 μg g−1) and gut fluorescence (between 0.12 and 0.38 ng Chl a Eq ind−1) indicate that a herbivorous diet could cover the energy requirements of A. bifilosa and support egg production. In the Gironde, the algal food availability and the gut fluorescence were lower (Chl a/SPM: 10 to 80 μg g−1; GF: 0.09 and 0.25 ng Chl a Eq ind−1), and the egg production showed significant positive correlation with the particulate food value, suggesting that other sources of carbon rather than phytoplankton were responsible for the observed changes in egg production. Results indicate that the particular seston properties of each system may be responsible for the noticeable differences in A. bifilosa fertility among estuaries.  相似文献   

15.
Under strong light conditions, long-lived chlorophyll triplets (3Chls) are formed, which can sensitize singlet oxygen, a species harmful to the photosynthetic apparatus of plants. Plants have developed multiple photoprotective mechanisms to quench 3Chl and scavenge singlet oxygen in order to sustain the photosynthetic activities. The lumenal loop of light-harvesting chlorophyll a/b complex of photosystem II (LHCII) plays important roles in regulating the pigment conformation and energy dissipation. In this study, site-directed mutagenesis analysis was applied to investigate triplet–triplet energy transfer and quenching of 3Chl in LHCII. We mutated the amino acid at site 123 located in this region to Gly, Pro, Gln, Thr and Tyr, respectively, and recorded fluorescence excitation spectra, triplet-minus-singlet (TmS) spectra and kinetics of carotenoid triplet decay for wild type and all the mutants. A red-shift was evident in the TmS spectra of the mutants S123T and S123P, and all of the mutants except S123Y showed a decrease in the triplet energy transfer efficiency. We propose, on the basis of the available structural information, that these phenomena are related to the involvement, due to conformational changes in the lumenal region, of a long-wavelength lutein (Lut2) involved in quenching 3Chl.  相似文献   

16.
The effects of cell size of epipelic diatoms and sediment Chl a content (as an index of algal biomass) on the ingestion rate of Hydrobia ulvae adults and juveniles were investigated in experimental microcosms. Results showed that both adults and juveniles ingested small and large diatoms without exhibiting cell size selection behaviour. The functional response of H. ulvae, juveniles (<4 mm) and adults (>4 mm), over a wide range of sediment Chl a content, was characterized by an increase of the ingestion rate according to a power law. Ingestion rate varied from 0.75 to 10 ng Chl a ind−1 h−1 for juveniles and from 1 to 52 ng Chl a ind−1 h−1 for adults, in the range ca. 10-100 μg Chl a (g dry weight sediment)−1. The ingestion rate was about three times higher for adults than for juveniles. Based on these experimental results, we further proposed a mechanistic approach, using an individual based-model, to identify simple feeding mechanisms that might be involved in H. ulvae functional response.  相似文献   

17.
Truncated light-harvesting antenna 1 (TLA1) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii. The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene.  相似文献   

18.
Cytochrome a1 was solubilized with Triton X-100 from a membrane-envelope preparation of Nitrosomonas and partially purified by repeated fractionation with (NH4)2SO4. The purified fraction of cytochrome a1 was enriched over the crude extract by a factor of 16 and 300 with respect to protein and c-type cytochrome, respectively. The cytochrome was characterized as cytochrome a1 on the basis of (a) reduced absorption maxima at 444 nm and 595 nm, (b) acid acetone extractibility and ether solubility of the heme and (c) absorption maximum of 587 nm of the ferro-hemochrome in alkaline pyridine. The α absorption band shifted from 600 nm to 595 nm upon solubilization of the cytochrome with Triton X-100. Spectral shifts were observed in the presence of cyanide and azide and the cytochrome changed with aging to a form with a reduced absorption band at 422 nm. Cytochrome a1 was reduced anaerobically in the presence of reduced mammalian cytochrome c and was rapidly reoxidized in the presence of O2. CO caused a shift in the soret peak of the reduced form but did not prevent reoxidation of cytochrome a1 in the presence of CO-O2 (95:5, v/v).  相似文献   

19.
Previous studies have shown that the carcinogen N-hydroxy-2-acetylaminofluorene is converted by one-electron oxidants to a free nitroxide radical which dismutates to N-acetoxy-2-acetylaminofluorene and 2-nitrosofluorene. The present study shows that the same oxidation can be achieved with horseradish peroxidase and H2O2. The free radical intermediate was detected by its ESR signal, and the yields of N-acetoxy-2-acetylaminofluorene and of 2-nitrosofluorene were determined under a number of conditions. Addition of tRNA to the reaction mixture containing N-acetoxy-N-2-acetyl[2′-3H]aminofluorene yielded tRNA-bound radioactivity; addition of guanosine yielded a reaction product which appears to be N-guanosin-8-yl)-2-acetylaminofluorene. The latter compound has previously been identified as a reaction product of N-acetoxy-2-acetylaminofluorene and guanosine. Preliminary attempts to demonstrate the formation of a nitroxide free radical or its dismutation products with rat liver mixed function oxidase systems were not successful.  相似文献   

20.
A number of carcinogenic aromatic acethydroxamic acids (e.g.N-hydroxy-N-acetyl derivatives of 2-aminofluorene, 3-aminofluorene, 4-aminostilbene, 1-aminonaphthalene, 2-aminonaphthalene, 2-aminophenanthrene, and 4-aminobiphenyl) are readily oxidized by alkaline Fe(CN)63− or Ag2O. The free nitroxide radicals thus formed dismutate in organic solution according to second order kinetics to yield the corresponding N-acetoxy-N-acetylaminoarenes and nitrosoarenes. The structures of the latter products were established by mass and infrared spectrum analyses. Evicence was obtained for a similar one-electron oxidation of these acethydroxamic acids with horseradish peroxidase and H2O2 at pH 7. One-electron oxidation of N-hydroxy-2-acetylaminofluorene was also demonstrated with lactoperoxidase and human myeloperoxidase. The possible relevance of a similar peroxidative attack in vivo to the carcinogenic activities of some aromatic amines and amides is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号